פתור עבור x, y
x=1
y=4
גרף
שתף
הועתק ללוח
y-5x=-1
שקול את המשוואה השניה. החסר 5x משני האגפים.
2x-y=-2,-5x+y=-1
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
2x-y=-2
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
2x=y-2
הוסף y לשני אגפי המשוואה.
x=\frac{1}{2}\left(y-2\right)
חלק את שני האגפים ב- 2.
x=\frac{1}{2}y-1
הכפל את \frac{1}{2} ב- y-2.
-5\left(\frac{1}{2}y-1\right)+y=-1
השתמש ב- \frac{y}{2}-1 במקום x במשוואה השניה, -5x+y=-1.
-\frac{5}{2}y+5+y=-1
הכפל את -5 ב- \frac{y}{2}-1.
-\frac{3}{2}y+5=-1
הוסף את -\frac{5y}{2} ל- y.
-\frac{3}{2}y=-6
החסר 5 משני אגפי המשוואה.
y=4
חלק את שני אגפי המשוואה ב- -\frac{3}{2}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{1}{2}\times 4-1
השתמש ב- 4 במקום y ב- x=\frac{1}{2}y-1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=2-1
הכפל את \frac{1}{2} ב- 4.
x=1
הוסף את -1 ל- 2.
x=1,y=4
המערכת נפתרה כעת.
y-5x=-1
שקול את המשוואה השניה. החסר 5x משני האגפים.
2x-y=-2,-5x+y=-1
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}2&-1\\-5&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-\left(-5\right)\right)}&-\frac{-1}{2-\left(-\left(-5\right)\right)}\\-\frac{-5}{2-\left(-\left(-5\right)\right)}&\frac{2}{2-\left(-\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&-\frac{1}{3}\\-\frac{5}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-2\right)-\frac{1}{3}\left(-1\right)\\-\frac{5}{3}\left(-2\right)-\frac{2}{3}\left(-1\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=1,y=4
חלץ את רכיבי המטריצה x ו- y.
y-5x=-1
שקול את המשוואה השניה. החסר 5x משני האגפים.
2x-y=-2,-5x+y=-1
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
-5\times 2x-5\left(-1\right)y=-5\left(-2\right),2\left(-5\right)x+2y=2\left(-1\right)
כדי להפוך את 2x ו- -5x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- -5 ואת כל האיברים בכל אגף של המשוואה השניה ב- 2.
-10x+5y=10,-10x+2y=-2
פשט.
-10x+10x+5y-2y=10+2
החסר את -10x+2y=-2 מ- -10x+5y=10 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
5y-2y=10+2
הוסף את -10x ל- 10x. האיברים -10x ו- 10x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
3y=10+2
הוסף את 5y ל- -2y.
3y=12
הוסף את 10 ל- 2.
y=4
חלק את שני האגפים ב- 3.
-5x+4=-1
השתמש ב- 4 במקום y ב- -5x+y=-1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
-5x=-5
החסר 4 משני אגפי המשוואה.
x=1
חלק את שני האגפים ב- -5.
x=1,y=4
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}