דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

2x+3y=12,3x+2y=13
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
2x+3y=12
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
2x=-3y+12
החסר ‎3y משני אגפי המשוואה.
x=\frac{1}{2}\left(-3y+12\right)
חלק את שני האגפים ב- ‎2.
x=-\frac{3}{2}y+6
הכפל את ‎\frac{1}{2} ב- ‎-3y+12.
3\left(-\frac{3}{2}y+6\right)+2y=13
השתמש ב- ‎-\frac{3y}{2}+6 במקום ‎x במשוואה השניה, ‎3x+2y=13.
-\frac{9}{2}y+18+2y=13
הכפל את ‎3 ב- ‎-\frac{3y}{2}+6.
-\frac{5}{2}y+18=13
הוסף את ‎-\frac{9y}{2} ל- ‎2y.
-\frac{5}{2}y=-5
החסר ‎18 משני אגפי המשוואה.
y=2
חלק את שני אגפי המשוואה ב- ‎-\frac{5}{2}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=-\frac{3}{2}\times 2+6
השתמש ב- ‎2 במקום y ב- ‎x=-\frac{3}{2}y+6. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-3+6
הכפל את ‎-\frac{3}{2} ב- ‎2.
x=3
הוסף את ‎6 ל- ‎-3.
x=3,y=2
המערכת נפתרה כעת.
2x+3y=12,3x+2y=13
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\13\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}2&3\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3\times 3}&-\frac{3}{2\times 2-3\times 3}\\-\frac{3}{2\times 2-3\times 3}&\frac{2}{2\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}12\\13\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{5}\\\frac{3}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}12\\13\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 12+\frac{3}{5}\times 13\\\frac{3}{5}\times 12-\frac{2}{5}\times 13\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=3,y=2
חלץ את רכיבי המטריצה x ו- y.
2x+3y=12,3x+2y=13
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3\times 2x+3\times 3y=3\times 12,2\times 3x+2\times 2y=2\times 13
כדי להפוך את ‎2x ו- ‎3x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎3 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎2.
6x+9y=36,6x+4y=26
פשט.
6x-6x+9y-4y=36-26
החסר את ‎6x+4y=26 מ- ‎6x+9y=36 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
9y-4y=36-26
הוסף את ‎6x ל- ‎-6x. האיברים ‎6x ו- ‎-6x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
5y=36-26
הוסף את ‎9y ל- ‎-4y.
5y=10
הוסף את ‎36 ל- ‎-26.
y=2
חלק את שני האגפים ב- ‎5.
3x+2\times 2=13
השתמש ב- ‎2 במקום y ב- ‎3x+2y=13. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
3x+4=13
הכפל את ‎2 ב- ‎2.
3x=9
החסר ‎4 משני אגפי המשוואה.
x=3
חלק את שני האגפים ב- ‎3.
x=3,y=2
המערכת נפתרה כעת.