דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

2x+3y=10,x+2y=5
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
2x+3y=10
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
2x=-3y+10
החסר ‎3y משני אגפי המשוואה.
x=\frac{1}{2}\left(-3y+10\right)
חלק את שני האגפים ב- ‎2.
x=-\frac{3}{2}y+5
הכפל את ‎\frac{1}{2} ב- ‎-3y+10.
-\frac{3}{2}y+5+2y=5
השתמש ב- ‎-\frac{3y}{2}+5 במקום ‎x במשוואה השניה, ‎x+2y=5.
\frac{1}{2}y+5=5
הוסף את ‎-\frac{3y}{2} ל- ‎2y.
\frac{1}{2}y=0
החסר ‎5 משני אגפי המשוואה.
y=0
הכפל את שני האגפים ב- ‎2.
x=5
השתמש ב- ‎0 במקום y ב- ‎x=-\frac{3}{2}y+5. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=5,y=0
המערכת נפתרה כעת.
2x+3y=10,x+2y=5
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}2&3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}2&3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}2&3\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3}&-\frac{3}{2\times 2-3}\\-\frac{1}{2\times 2-3}&\frac{2}{2\times 2-3}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-3\\-1&2\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 10-3\times 5\\-10+2\times 5\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=5,y=0
חלץ את רכיבי המטריצה x ו- y.
2x+3y=10,x+2y=5
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2x+3y=10,2x+2\times 2y=2\times 5
כדי להפוך את ‎2x ו- ‎x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎1 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎2.
2x+3y=10,2x+4y=10
פשט.
2x-2x+3y-4y=10-10
החסר את ‎2x+4y=10 מ- ‎2x+3y=10 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
3y-4y=10-10
הוסף את ‎2x ל- ‎-2x. האיברים ‎2x ו- ‎-2x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-y=10-10
הוסף את ‎3y ל- ‎-4y.
-y=0
הוסף את ‎10 ל- ‎-10.
y=0
חלק את שני האגפים ב- ‎-1.
x=5
השתמש ב- ‎0 במקום y ב- ‎x+2y=5. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=5,y=0
המערכת נפתרה כעת.