דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

2x+2y=28,x+3y=24
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
2x+2y=28
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
2x=-2y+28
החסר ‎2y משני אגפי המשוואה.
x=\frac{1}{2}\left(-2y+28\right)
חלק את שני האגפים ב- ‎2.
x=-y+14
הכפל את ‎\frac{1}{2} ב- ‎-2y+28.
-y+14+3y=24
השתמש ב- ‎-y+14 במקום ‎x במשוואה השניה, ‎x+3y=24.
2y+14=24
הוסף את ‎-y ל- ‎3y.
2y=10
החסר ‎14 משני אגפי המשוואה.
y=5
חלק את שני האגפים ב- ‎2.
x=-5+14
השתמש ב- ‎5 במקום y ב- ‎x=-y+14. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=9
הוסף את ‎14 ל- ‎-5.
x=9,y=5
המערכת נפתרה כעת.
2x+2y=28,x+3y=24
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}2&2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\24\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}2&2\\1&3\end{matrix}\right))\left(\begin{matrix}2&2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}2&2\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-2}&-\frac{2}{2\times 3-2}\\-\frac{1}{2\times 3-2}&\frac{2}{2\times 3-2}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&-\frac{1}{2}\\-\frac{1}{4}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 28-\frac{1}{2}\times 24\\-\frac{1}{4}\times 28+\frac{1}{2}\times 24\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\5\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=9,y=5
חלץ את רכיבי המטריצה x ו- y.
2x+2y=28,x+3y=24
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2x+2y=28,2x+2\times 3y=2\times 24
כדי להפוך את ‎2x ו- ‎x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎1 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎2.
2x+2y=28,2x+6y=48
פשט.
2x-2x+2y-6y=28-48
החסר את ‎2x+6y=48 מ- ‎2x+2y=28 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
2y-6y=28-48
הוסף את ‎2x ל- ‎-2x. האיברים ‎2x ו- ‎-2x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-4y=28-48
הוסף את ‎2y ל- ‎-6y.
-4y=-20
הוסף את ‎28 ל- ‎-48.
y=5
חלק את שני האגפים ב- ‎-4.
x+3\times 5=24
השתמש ב- ‎5 במקום y ב- ‎x+3y=24. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x+15=24
הכפל את ‎3 ב- ‎5.
x=9
החסר ‎15 משני אגפי המשוואה.
x=9,y=5
המערכת נפתרה כעת.