פתור עבור x, y
x=9
y=-5
גרף
שתף
הועתק ללוח
-x-3y=6,2x+3y=3
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
-x-3y=6
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
-x=3y+6
הוסף 3y לשני אגפי המשוואה.
x=-\left(3y+6\right)
חלק את שני האגפים ב- -1.
x=-3y-6
הכפל את -1 ב- 6+3y.
2\left(-3y-6\right)+3y=3
השתמש ב- -3y-6 במקום x במשוואה השניה, 2x+3y=3.
-6y-12+3y=3
הכפל את 2 ב- -3y-6.
-3y-12=3
הוסף את -6y ל- 3y.
-3y=15
הוסף 12 לשני אגפי המשוואה.
y=-5
חלק את שני האגפים ב- -3.
x=-3\left(-5\right)-6
השתמש ב- -5 במקום y ב- x=-3y-6. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=15-6
הכפל את -3 ב- -5.
x=9
הוסף את -6 ל- 15.
x=9,y=-5
המערכת נפתרה כעת.
-x-3y=6,2x+3y=3
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}-1&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\3\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}-1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}-1&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}-1&-3\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-3-\left(-3\times 2\right)}&-\frac{-3}{-3-\left(-3\times 2\right)}\\-\frac{2}{-3-\left(-3\times 2\right)}&-\frac{1}{-3-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&1\\-\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6+3\\-\frac{2}{3}\times 6-\frac{1}{3}\times 3\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-5\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=9,y=-5
חלץ את רכיבי המטריצה x ו- y.
-x-3y=6,2x+3y=3
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2\left(-1\right)x+2\left(-3\right)y=2\times 6,-2x-3y=-3
כדי להפוך את -x ו- 2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 2 ואת כל האיברים בכל אגף של המשוואה השניה ב- -1.
-2x-6y=12,-2x-3y=-3
פשט.
-2x+2x-6y+3y=12+3
החסר את -2x-3y=-3 מ- -2x-6y=12 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-6y+3y=12+3
הוסף את -2x ל- 2x. האיברים -2x ו- 2x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-3y=12+3
הוסף את -6y ל- 3y.
-3y=15
הוסף את 12 ל- 3.
y=-5
חלק את שני האגפים ב- -3.
2x+3\left(-5\right)=3
השתמש ב- -5 במקום y ב- 2x+3y=3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
2x-15=3
הכפל את 3 ב- -5.
2x=18
הוסף 15 לשני אגפי המשוואה.
x=9
חלק את שני האגפים ב- 2.
x=9,y=-5
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}