דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

-x-2y=4,3x-y=2
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
-x-2y=4
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
-x=2y+4
הוסף ‎2y לשני אגפי המשוואה.
x=-\left(2y+4\right)
חלק את שני האגפים ב- ‎-1.
x=-2y-4
הכפל את ‎-1 ב- ‎4+2y.
3\left(-2y-4\right)-y=2
השתמש ב- ‎-2y-4 במקום ‎x במשוואה השניה, ‎3x-y=2.
-6y-12-y=2
הכפל את ‎3 ב- ‎-2y-4.
-7y-12=2
הוסף את ‎-6y ל- ‎-y.
-7y=14
הוסף ‎12 לשני אגפי המשוואה.
y=-2
חלק את שני האגפים ב- ‎-7.
x=-2\left(-2\right)-4
השתמש ב- ‎-2 במקום y ב- ‎x=-2y-4. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=4-4
הכפל את ‎-2 ב- ‎-2.
x=0
הוסף את ‎-4 ל- ‎4.
x=0,y=-2
המערכת נפתרה כעת.
-x-2y=4,3x-y=2
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}-1&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}-1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}-1&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}-1&-2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-\left(-1\right)-\left(-2\times 3\right)}&-\frac{-2}{-\left(-1\right)-\left(-2\times 3\right)}\\-\frac{3}{-\left(-1\right)-\left(-2\times 3\right)}&-\frac{1}{-\left(-1\right)-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{2}{7}\\-\frac{3}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\times 4+\frac{2}{7}\times 2\\-\frac{3}{7}\times 4-\frac{1}{7}\times 2\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=0,y=-2
חלץ את רכיבי המטריצה x ו- y.
-x-2y=4,3x-y=2
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3\left(-1\right)x+3\left(-2\right)y=3\times 4,-3x-\left(-y\right)=-2
כדי להפוך את ‎-x ו- ‎3x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎3 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎-1.
-3x-6y=12,-3x+y=-2
פשט.
-3x+3x-6y-y=12+2
החסר את ‎-3x+y=-2 מ- ‎-3x-6y=12 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-6y-y=12+2
הוסף את ‎-3x ל- ‎3x. האיברים ‎-3x ו- ‎3x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-7y=12+2
הוסף את ‎-6y ל- ‎-y.
-7y=14
הוסף את ‎12 ל- ‎2.
y=-2
חלק את שני האגפים ב- ‎-7.
3x-\left(-2\right)=2
השתמש ב- ‎-2 במקום y ב- ‎3x-y=2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
3x=0
החסר ‎2 משני אגפי המשוואה.
x=0
חלק את שני האגפים ב- ‎3.
x=0,y=-2
המערכת נפתרה כעת.