פתור עבור x, y
x=-9
y=4
גרף
שתף
הועתק ללוח
-x+2y=17,2x+2y=-10
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
-x+2y=17
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
-x=-2y+17
החסר 2y משני אגפי המשוואה.
x=-\left(-2y+17\right)
חלק את שני האגפים ב- -1.
x=2y-17
הכפל את -1 ב- -2y+17.
2\left(2y-17\right)+2y=-10
השתמש ב- 2y-17 במקום x במשוואה השניה, 2x+2y=-10.
4y-34+2y=-10
הכפל את 2 ב- 2y-17.
6y-34=-10
הוסף את 4y ל- 2y.
6y=24
הוסף 34 לשני אגפי המשוואה.
y=4
חלק את שני האגפים ב- 6.
x=2\times 4-17
השתמש ב- 4 במקום y ב- x=2y-17. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=8-17
הכפל את 2 ב- 4.
x=-9
הוסף את -17 ל- 8.
x=-9,y=4
המערכת נפתרה כעת.
-x+2y=17,2x+2y=-10
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}-1&2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\-10\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}-1&2\\2&2\end{matrix}\right))\left(\begin{matrix}-1&2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\2&2\end{matrix}\right))\left(\begin{matrix}17\\-10\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}-1&2\\2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\2&2\end{matrix}\right))\left(\begin{matrix}17\\-10\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\2&2\end{matrix}\right))\left(\begin{matrix}17\\-10\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2-2\times 2}&-\frac{2}{-2-2\times 2}\\-\frac{2}{-2-2\times 2}&-\frac{1}{-2-2\times 2}\end{matrix}\right)\left(\begin{matrix}17\\-10\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}17\\-10\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 17+\frac{1}{3}\left(-10\right)\\\frac{1}{3}\times 17+\frac{1}{6}\left(-10\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-9,y=4
חלץ את רכיבי המטריצה x ו- y.
-x+2y=17,2x+2y=-10
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
-x-2x+2y-2y=17+10
החסר את 2x+2y=-10 מ- -x+2y=17 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-x-2x=17+10
הוסף את 2y ל- -2y. האיברים 2y ו- -2y מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-3x=17+10
הוסף את -x ל- -2x.
-3x=27
הוסף את 17 ל- 10.
x=-9
חלק את שני האגפים ב- -3.
2\left(-9\right)+2y=-10
השתמש ב- -9 במקום x ב- 2x+2y=-10. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
-18+2y=-10
הכפל את 2 ב- -9.
2y=8
הוסף 18 לשני אגפי המשוואה.
y=4
חלק את שני האגפים ב- 2.
x=-9,y=4
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}