דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

-3x+y=1,-3x+2y=5
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
-3x+y=1
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
-3x=-y+1
החסר ‎y משני אגפי המשוואה.
x=-\frac{1}{3}\left(-y+1\right)
חלק את שני האגפים ב- ‎-3.
x=\frac{1}{3}y-\frac{1}{3}
הכפל את ‎-\frac{1}{3} ב- ‎-y+1.
-3\left(\frac{1}{3}y-\frac{1}{3}\right)+2y=5
השתמש ב- ‎\frac{-1+y}{3} במקום ‎x במשוואה השניה, ‎-3x+2y=5.
-y+1+2y=5
הכפל את ‎-3 ב- ‎\frac{-1+y}{3}.
y+1=5
הוסף את ‎-y ל- ‎2y.
y=4
החסר ‎1 משני אגפי המשוואה.
x=\frac{1}{3}\times 4-\frac{1}{3}
השתמש ב- ‎4 במקום y ב- ‎x=\frac{1}{3}y-\frac{1}{3}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{4-1}{3}
הכפל את ‎\frac{1}{3} ב- ‎4.
x=1
הוסף את ‎-\frac{1}{3} ל- ‎\frac{4}{3} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=1,y=4
המערכת נפתרה כעת.
-3x+y=1,-3x+2y=5
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}-3&1\\-3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-3\times 2-\left(-3\right)}&-\frac{1}{-3\times 2-\left(-3\right)}\\-\frac{-3}{-3\times 2-\left(-3\right)}&-\frac{3}{-3\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{1}{3}\\-1&1\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}+\frac{1}{3}\times 5\\-1+5\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=1,y=4
חלץ את רכיבי המטריצה x ו- y.
-3x+y=1,-3x+2y=5
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
-3x+3x+y-2y=1-5
החסר את ‎-3x+2y=5 מ- ‎-3x+y=1 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
y-2y=1-5
הוסף את ‎-3x ל- ‎3x. האיברים ‎-3x ו- ‎3x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-y=1-5
הוסף את ‎y ל- ‎-2y.
-y=-4
הוסף את ‎1 ל- ‎-5.
y=4
חלק את שני האגפים ב- ‎-1.
-3x+2\times 4=5
השתמש ב- ‎4 במקום y ב- ‎-3x+2y=5. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
-3x+8=5
הכפל את ‎2 ב- ‎4.
-3x=-3
החסר ‎8 משני אגפי המשוואה.
x=1
חלק את שני האגפים ב- ‎-3.
x=1,y=4
המערכת נפתרה כעת.