פתור עבור x, y
x=-3
y=2
גרף
שתף
הועתק ללוח
-3x+9y=27,-5x-8y=-1
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
-3x+9y=27
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
-3x=-9y+27
החסר 9y משני אגפי המשוואה.
x=-\frac{1}{3}\left(-9y+27\right)
חלק את שני האגפים ב- -3.
x=3y-9
הכפל את -\frac{1}{3} ב- -9y+27.
-5\left(3y-9\right)-8y=-1
השתמש ב- -9+3y במקום x במשוואה השניה, -5x-8y=-1.
-15y+45-8y=-1
הכפל את -5 ב- -9+3y.
-23y+45=-1
הוסף את -15y ל- -8y.
-23y=-46
החסר 45 משני אגפי המשוואה.
y=2
חלק את שני האגפים ב- -23.
x=3\times 2-9
השתמש ב- 2 במקום y ב- x=3y-9. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=6-9
הכפל את 3 ב- 2.
x=-3
הוסף את -9 ל- 6.
x=-3,y=2
המערכת נפתרה כעת.
-3x+9y=27,-5x-8y=-1
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\-1\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right))\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right))\left(\begin{matrix}27\\-1\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right))\left(\begin{matrix}27\\-1\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right))\left(\begin{matrix}27\\-1\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-3\left(-8\right)-9\left(-5\right)}&-\frac{9}{-3\left(-8\right)-9\left(-5\right)}\\-\frac{-5}{-3\left(-8\right)-9\left(-5\right)}&-\frac{3}{-3\left(-8\right)-9\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}27\\-1\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{69}&-\frac{3}{23}\\\frac{5}{69}&-\frac{1}{23}\end{matrix}\right)\left(\begin{matrix}27\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{69}\times 27-\frac{3}{23}\left(-1\right)\\\frac{5}{69}\times 27-\frac{1}{23}\left(-1\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-3,y=2
חלץ את רכיבי המטריצה x ו- y.
-3x+9y=27,-5x-8y=-1
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
-5\left(-3\right)x-5\times 9y=-5\times 27,-3\left(-5\right)x-3\left(-8\right)y=-3\left(-1\right)
כדי להפוך את -3x ו- -5x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- -5 ואת כל האיברים בכל אגף של המשוואה השניה ב- -3.
15x-45y=-135,15x+24y=3
פשט.
15x-15x-45y-24y=-135-3
החסר את 15x+24y=3 מ- 15x-45y=-135 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-45y-24y=-135-3
הוסף את 15x ל- -15x. האיברים 15x ו- -15x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-69y=-135-3
הוסף את -45y ל- -24y.
-69y=-138
הוסף את -135 ל- -3.
y=2
חלק את שני האגפים ב- -69.
-5x-8\times 2=-1
השתמש ב- 2 במקום y ב- -5x-8y=-1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
-5x-16=-1
הכפל את -8 ב- 2.
-5x=15
הוסף 16 לשני אגפי המשוואה.
x=-3
חלק את שני האגפים ב- -5.
x=-3,y=2
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}