פתור עבור x, y
x=-3
y=-6
גרף
שתף
הועתק ללוח
-3x+3y=-9,6x-y=-12
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
-3x+3y=-9
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
-3x=-3y-9
החסר 3y משני אגפי המשוואה.
x=-\frac{1}{3}\left(-3y-9\right)
חלק את שני האגפים ב- -3.
x=y+3
הכפל את -\frac{1}{3} ב- -3y-9.
6\left(y+3\right)-y=-12
השתמש ב- y+3 במקום x במשוואה השניה, 6x-y=-12.
6y+18-y=-12
הכפל את 6 ב- y+3.
5y+18=-12
הוסף את 6y ל- -y.
5y=-30
החסר 18 משני אגפי המשוואה.
y=-6
חלק את שני האגפים ב- 5.
x=-6+3
השתמש ב- -6 במקום y ב- x=y+3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-3
הוסף את 3 ל- -6.
x=-3,y=-6
המערכת נפתרה כעת.
-3x+3y=-9,6x-y=-12
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-12\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-9\\-12\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}-3&3\\6&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-9\\-12\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-9\\-12\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-3\left(-1\right)-3\times 6}&-\frac{3}{-3\left(-1\right)-3\times 6}\\-\frac{6}{-3\left(-1\right)-3\times 6}&-\frac{3}{-3\left(-1\right)-3\times 6}\end{matrix}\right)\left(\begin{matrix}-9\\-12\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&\frac{1}{5}\\\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-9\\-12\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\left(-9\right)+\frac{1}{5}\left(-12\right)\\\frac{2}{5}\left(-9\right)+\frac{1}{5}\left(-12\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-6\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-3,y=-6
חלץ את רכיבי המטריצה x ו- y.
-3x+3y=-9,6x-y=-12
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
6\left(-3\right)x+6\times 3y=6\left(-9\right),-3\times 6x-3\left(-1\right)y=-3\left(-12\right)
כדי להפוך את -3x ו- 6x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 6 ואת כל האיברים בכל אגף של המשוואה השניה ב- -3.
-18x+18y=-54,-18x+3y=36
פשט.
-18x+18x+18y-3y=-54-36
החסר את -18x+3y=36 מ- -18x+18y=-54 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
18y-3y=-54-36
הוסף את -18x ל- 18x. האיברים -18x ו- 18x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
15y=-54-36
הוסף את 18y ל- -3y.
15y=-90
הוסף את -54 ל- -36.
y=-6
חלק את שני האגפים ב- 15.
6x-\left(-6\right)=-12
השתמש ב- -6 במקום y ב- 6x-y=-12. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
6x=-18
החסר 6 משני אגפי המשוואה.
x=-3
חלק את שני האגפים ב- 6.
x=-3,y=-6
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}