דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x+2y=28
שקול את המשוואה הראשונה. הכפל את שני הצדדים של המשוואה ב- 4, הכפולה המשותפת הנמוכה ביותר של 4,2.
4x-3y=24
שקול את המשוואה השניה. הכפל את שני הצדדים של המשוואה ב- 12, הכפולה המשותפת הנמוכה ביותר של 3,4.
x+2y=28,4x-3y=24
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x+2y=28
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=-2y+28
החסר ‎2y משני אגפי המשוואה.
4\left(-2y+28\right)-3y=24
השתמש ב- ‎-2y+28 במקום ‎x במשוואה השניה, ‎4x-3y=24.
-8y+112-3y=24
הכפל את ‎4 ב- ‎-2y+28.
-11y+112=24
הוסף את ‎-8y ל- ‎-3y.
-11y=-88
החסר ‎112 משני אגפי המשוואה.
y=8
חלק את שני האגפים ב- ‎-11.
x=-2\times 8+28
השתמש ב- ‎8 במקום y ב- ‎x=-2y+28. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-16+28
הכפל את ‎-2 ב- ‎8.
x=12
הוסף את ‎28 ל- ‎-16.
x=12,y=8
המערכת נפתרה כעת.
x+2y=28
שקול את המשוואה הראשונה. הכפל את שני הצדדים של המשוואה ב- 4, הכפולה המשותפת הנמוכה ביותר של 4,2.
4x-3y=24
שקול את המשוואה השניה. הכפל את שני הצדדים של המשוואה ב- 12, הכפולה המשותפת הנמוכה ביותר של 3,4.
x+2y=28,4x-3y=24
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\24\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}1&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&2\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2\times 4}&-\frac{2}{-3-2\times 4}\\-\frac{4}{-3-2\times 4}&\frac{1}{-3-2\times 4}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{2}{11}\\\frac{4}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 28+\frac{2}{11}\times 24\\\frac{4}{11}\times 28-\frac{1}{11}\times 24\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\8\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=12,y=8
חלץ את רכיבי המטריצה x ו- y.
x+2y=28
שקול את המשוואה הראשונה. הכפל את שני הצדדים של המשוואה ב- 4, הכפולה המשותפת הנמוכה ביותר של 4,2.
4x-3y=24
שקול את המשוואה השניה. הכפל את שני הצדדים של המשוואה ב- 12, הכפולה המשותפת הנמוכה ביותר של 3,4.
x+2y=28,4x-3y=24
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
4x+4\times 2y=4\times 28,4x-3y=24
כדי להפוך את ‎x ו- ‎4x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎4 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎1.
4x+8y=112,4x-3y=24
פשט.
4x-4x+8y+3y=112-24
החסר את ‎4x-3y=24 מ- ‎4x+8y=112 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
8y+3y=112-24
הוסף את ‎4x ל- ‎-4x. האיברים ‎4x ו- ‎-4x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
11y=112-24
הוסף את ‎8y ל- ‎3y.
11y=88
הוסף את ‎112 ל- ‎-24.
y=8
חלק את שני האגפים ב- ‎11.
4x-3\times 8=24
השתמש ב- ‎8 במקום y ב- ‎4x-3y=24. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
4x-24=24
הכפל את ‎-3 ב- ‎8.
4x=48
הוסף ‎24 לשני אגפי המשוואה.
x=12
חלק את שני האגפים ב- ‎4.
x=12,y=8
המערכת נפתרה כעת.