פתור עבור x, y
x=14
y=4
גרף
שתף
הועתק ללוח
-2x+9y=8,x-2y=6
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
-2x+9y=8
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
-2x=-9y+8
החסר 9y משני אגפי המשוואה.
x=-\frac{1}{2}\left(-9y+8\right)
חלק את שני האגפים ב- -2.
x=\frac{9}{2}y-4
הכפל את -\frac{1}{2} ב- -9y+8.
\frac{9}{2}y-4-2y=6
השתמש ב- \frac{9y}{2}-4 במקום x במשוואה השניה, x-2y=6.
\frac{5}{2}y-4=6
הוסף את \frac{9y}{2} ל- -2y.
\frac{5}{2}y=10
הוסף 4 לשני אגפי המשוואה.
y=4
חלק את שני אגפי המשוואה ב- \frac{5}{2}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{9}{2}\times 4-4
השתמש ב- 4 במקום y ב- x=\frac{9}{2}y-4. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=18-4
הכפל את \frac{9}{2} ב- 4.
x=14
הוסף את -4 ל- 18.
x=14,y=4
המערכת נפתרה כעת.
-2x+9y=8,x-2y=6
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\6\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}-2&9\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2\left(-2\right)-9}&-\frac{9}{-2\left(-2\right)-9}\\-\frac{1}{-2\left(-2\right)-9}&-\frac{2}{-2\left(-2\right)-9}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{9}{5}\\\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 8+\frac{9}{5}\times 6\\\frac{1}{5}\times 8+\frac{2}{5}\times 6\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=14,y=4
חלץ את רכיבי המטריצה x ו- y.
-2x+9y=8,x-2y=6
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
-2x+9y=8,-2x-2\left(-2\right)y=-2\times 6
כדי להפוך את -2x ו- x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 1 ואת כל האיברים בכל אגף של המשוואה השניה ב- -2.
-2x+9y=8,-2x+4y=-12
פשט.
-2x+2x+9y-4y=8+12
החסר את -2x+4y=-12 מ- -2x+9y=8 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
9y-4y=8+12
הוסף את -2x ל- 2x. האיברים -2x ו- 2x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
5y=8+12
הוסף את 9y ל- -4y.
5y=20
הוסף את 8 ל- 12.
y=4
חלק את שני האגפים ב- 5.
x-2\times 4=6
השתמש ב- 4 במקום y ב- x-2y=6. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x-8=6
הכפל את -2 ב- 4.
x=14
הוסף 8 לשני אגפי המשוואה.
x=14,y=4
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}