דילוג לתוכן העיקרי
הערך
Tick mark Image
הרחב
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-x
פרק את x^{2}+2x-1 לגורמים.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-\frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
כדי לחבר או להחסיר ביטויים, הרחב אותם כדי ליצור עבורם מכנה זהה. הכפל את ‎x ב- ‎\frac{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}.
\frac{x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
מכיוון ש- \frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} ו- \frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} כוללים מכנה זהה, חסר אותם על-ידי חיסור המונים שלהם.
\frac{x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
בצע את פעולות הכפל ב- ‎x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right).
\frac{-x^{2}-x-1-x^{3}}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
כינוס איברים דומים ב- x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-\left(\sqrt{2}\right)^{2}+1}
פיתוח ‎\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right).
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-2+1}
הריבוע של ‎\sqrt{2} הוא ‎2.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-1}
חבר את ‎-2 ו- ‎1 כדי לקבל ‎-1.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-x
פרק את x^{2}+2x-1 לגורמים.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-\frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
כדי לחבר או להחסיר ביטויים, הרחב אותם כדי ליצור עבורם מכנה זהה. הכפל את ‎x ב- ‎\frac{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}.
\frac{x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
מכיוון ש- \frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} ו- \frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} כוללים מכנה זהה, חסר אותם על-ידי חיסור המונים שלהם.
\frac{x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
בצע את פעולות הכפל ב- ‎x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right).
\frac{-x^{2}-x-1-x^{3}}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
כינוס איברים דומים ב- x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-\left(\sqrt{2}\right)^{2}+1}
פיתוח ‎\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right).
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-2+1}
הריבוע של ‎\sqrt{2} הוא ‎2.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-1}
חבר את ‎-2 ו- ‎1 כדי לקבל ‎-1.