פתור עבור x, y
x=0
y=2
גרף
שתף
הועתק ללוח
\frac{1}{10}x+\frac{1}{2}y=1,2x-10y=-20
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
\frac{1}{10}x+\frac{1}{2}y=1
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
\frac{1}{10}x=-\frac{1}{2}y+1
החסר \frac{y}{2} משני אגפי המשוואה.
x=10\left(-\frac{1}{2}y+1\right)
הכפל את שני האגפים ב- 10.
x=-5y+10
הכפל את 10 ב- -\frac{y}{2}+1.
2\left(-5y+10\right)-10y=-20
השתמש ב- -5y+10 במקום x במשוואה השניה, 2x-10y=-20.
-10y+20-10y=-20
הכפל את 2 ב- -5y+10.
-20y+20=-20
הוסף את -10y ל- -10y.
-20y=-40
החסר 20 משני אגפי המשוואה.
y=2
חלק את שני האגפים ב- -20.
x=-5\times 2+10
השתמש ב- 2 במקום y ב- x=-5y+10. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-10+10
הכפל את -5 ב- 2.
x=0
הוסף את 10 ל- -10.
x=0,y=2
המערכת נפתרה כעת.
\frac{1}{10}x+\frac{1}{2}y=1,2x-10y=-20
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-20\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}1\\-20\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}1\\-20\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}1\\-20\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}&-\frac{\frac{1}{2}}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}\\-\frac{2}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}&\frac{\frac{1}{10}}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}\end{matrix}\right)\left(\begin{matrix}1\\-20\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&\frac{1}{4}\\1&-\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}1\\-20\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5+\frac{1}{4}\left(-20\right)\\1-\frac{1}{20}\left(-20\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=0,y=2
חלץ את רכיבי המטריצה x ו- y.
\frac{1}{10}x+\frac{1}{2}y=1,2x-10y=-20
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2\times \frac{1}{10}x+2\times \frac{1}{2}y=2,\frac{1}{10}\times 2x+\frac{1}{10}\left(-10\right)y=\frac{1}{10}\left(-20\right)
כדי להפוך את \frac{x}{10} ו- 2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 2 ואת כל האיברים בכל אגף של המשוואה השניה ב- \frac{1}{10}.
\frac{1}{5}x+y=2,\frac{1}{5}x-y=-2
פשט.
\frac{1}{5}x-\frac{1}{5}x+y+y=2+2
החסר את \frac{1}{5}x-y=-2 מ- \frac{1}{5}x+y=2 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
y+y=2+2
הוסף את \frac{x}{5} ל- -\frac{x}{5}. האיברים \frac{x}{5} ו- -\frac{x}{5} מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
2y=2+2
הוסף את y ל- y.
2y=4
הוסף את 2 ל- 2.
y=2
חלק את שני האגפים ב- 2.
2x-10\times 2=-20
השתמש ב- 2 במקום y ב- 2x-10y=-20. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
2x-20=-20
הכפל את -10 ב- 2.
2x=0
הוסף 20 לשני אגפי המשוואה.
x=0
חלק את שני האגפים ב- 2.
x=0,y=2
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}