דילוג לתוכן העיקרי
חשב דטרמיננטה
Tick mark Image
הערך
Tick mark Image

שתף

det(\left(\begin{matrix}3&2&2\\0&2&2\\0&0&-1\end{matrix}\right))
מצא את דטרמיננטת המטריצה באמצעות שיטת האלכסונים.
\left(\begin{matrix}3&2&2&3&2\\0&2&2&0&2\\0&0&-1&0&0\end{matrix}\right)
הרחב את המטריצה המקורית על-ידי חזרה על שתי העמודות הראשונות כעמודה הרביעית והעמודה החמישית.
3\times 2\left(-1\right)=-6
החל מהערך השמאלי העליון, הכפל כלפי מטה לאורך האלכסונים וחבר את המכפלות המתקבלות.
\text{true}
החל מהערך השמאלי התחתון, הכפל כלפי מעלה לאורך האלכסונים וחבר את המכפלות המתקבלות.
-6
הפחת את הסכום של המכפלות האלכסוניות כלפי מעלה מהסכום של המכפלות האלכסוניות כלפי מטה.
det(\left(\begin{matrix}3&2&2\\0&2&2\\0&0&-1\end{matrix}\right))
מצא את דטרמיננטת המטריצה באמצעות שיטת הפיתוח לפי מינורים (המכונה גם פיתוח לפי קו-פקטורים).
3det(\left(\begin{matrix}2&2\\0&-1\end{matrix}\right))-2det(\left(\begin{matrix}0&2\\0&-1\end{matrix}\right))+2det(\left(\begin{matrix}0&2\\0&0\end{matrix}\right))
כדי לפתח לפי מינורים, הכפל כל רכיב של השורה הראשונה במינור שלו, שהוא הדטרמיננטה של מטריצת 2\times 2 שנוצרת על-ידי מחיקת השורה והעמודה המכילות רכיב זה, ולאחר מכן הכפל בסימן המיקום של הרכיב.
3\times 2\left(-1\right)
עבור מטריצת 2\times 2 של \left(\begin{matrix}a&b\\c&d\end{matrix}\right), דטרמיננטה זו ad-bc.
3\left(-2\right)
פשט.
-6
חבר את האיברים כדי להגיע לתוצאה הסופית.