\left| \begin{array} { c c c } { i } & { j } & { k } \\ { - 18 } & { 0 } & { 10 } \\ { 9 } & { 5 } & { - 5 } \end{array} \right|
הערך
-50i-90k
שתף
הועתק ללוח
det(\left(\begin{matrix}i&j&k\\-18&0&10\\9&5&-5\end{matrix}\right))
מצא את דטרמיננטת המטריצה באמצעות שיטת האלכסונים.
\left(\begin{matrix}i&j&k&i&j\\-18&0&10&-18&0\\9&5&-5&9&5\end{matrix}\right)
הרחב את המטריצה המקורית על-ידי חזרה על שתי העמודות הראשונות כעמודה הרביעית והעמודה החמישית.
j\times 10\times 9+k\left(-18\right)\times 5=90j-90k
החל מהערך השמאלי העליון, הכפל כלפי מטה לאורך האלכסונים וחבר את המכפלות המתקבלות.
5\times \left(10i\right)-5\left(-18\right)j=90j+50i
החל מהערך השמאלי התחתון, הכפל כלפי מעלה לאורך האלכסונים וחבר את המכפלות המתקבלות.
90j-90k-\left(90j+50i\right)
הפחת את הסכום של המכפלות האלכסוניות כלפי מעלה מהסכום של המכפלות האלכסוניות כלפי מטה.
-50i-90k
החסר 50i+90j מ- 90j-90k.
det(\left(\begin{matrix}i&j&k\\-18&0&10\\9&5&-5\end{matrix}\right))
מצא את דטרמיננטת המטריצה באמצעות שיטת הפיתוח לפי מינורים (המכונה גם פיתוח לפי קו-פקטורים).
idet(\left(\begin{matrix}0&10\\5&-5\end{matrix}\right))-jdet(\left(\begin{matrix}-18&10\\9&-5\end{matrix}\right))+kdet(\left(\begin{matrix}-18&0\\9&5\end{matrix}\right))
כדי לפתח לפי מינורים, הכפל כל רכיב של השורה הראשונה במינור שלו, שהוא הדטרמיננטה של מטריצת 2\times 2 שנוצרת על-ידי מחיקת השורה והעמודה המכילות רכיב זה, ולאחר מכן הכפל בסימן המיקום של הרכיב.
i\left(-5\times 10\right)-j\left(-18\left(-5\right)-9\times 10\right)+k\left(-18\right)\times 5
עבור מטריצת 2\times 2 של \left(\begin{matrix}a&b\\c&d\end{matrix}\right), דטרמיננטה זו ad-bc.
-50i+k\left(-90\right)
פשט.
-50i-90k
חבר את האיברים כדי להגיע לתוצאה הסופית.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}