דילוג לתוכן העיקרי
הערך
Tick mark Image
פרק לגורמים
Tick mark Image

בעיות דומות מחיפוש באינטרנט

שתף

det(\left(\begin{matrix}3&-1&4\\2&3&-1\\-5&2&3\end{matrix}\right))
מצא את דטרמיננטת המטריצה באמצעות שיטת האלכסונים.
\left(\begin{matrix}3&-1&4&3&-1\\2&3&-1&2&3\\-5&2&3&-5&2\end{matrix}\right)
הרחב את המטריצה המקורית על-ידי חזרה על שתי העמודות הראשונות כעמודה הרביעית והעמודה החמישית.
3\times 3\times 3-\left(-\left(-5\right)\right)+4\times 2\times 2=38
החל מהערך השמאלי העליון, הכפל כלפי מטה לאורך האלכסונים וחבר את המכפלות המתקבלות.
-5\times 3\times 4+2\left(-1\right)\times 3+3\times 2\left(-1\right)=-72
החל מהערך השמאלי התחתון, הכפל כלפי מעלה לאורך האלכסונים וחבר את המכפלות המתקבלות.
38-\left(-72\right)
הפחת את הסכום של המכפלות האלכסוניות כלפי מעלה מהסכום של המכפלות האלכסוניות כלפי מטה.
110
החסר ‎-72 מ- ‎38.
det(\left(\begin{matrix}3&-1&4\\2&3&-1\\-5&2&3\end{matrix}\right))
מצא את דטרמיננטת המטריצה באמצעות שיטת הפיתוח לפי מינורים (המכונה גם פיתוח לפי קו-פקטורים).
3det(\left(\begin{matrix}3&-1\\2&3\end{matrix}\right))-\left(-det(\left(\begin{matrix}2&-1\\-5&3\end{matrix}\right))\right)+4det(\left(\begin{matrix}2&3\\-5&2\end{matrix}\right))
כדי לפתח לפי מינורים, הכפל כל רכיב של השורה הראשונה במינור שלו, שהוא הדטרמיננטה של מטריצת 2\times 2 שנוצרת על-ידי מחיקת השורה והעמודה המכילות רכיב זה, ולאחר מכן הכפל בסימן המיקום של הרכיב.
3\left(3\times 3-2\left(-1\right)\right)-\left(-\left(2\times 3-\left(-5\left(-1\right)\right)\right)\right)+4\left(2\times 2-\left(-5\times 3\right)\right)
עבור מטריצת 2\times 2 של \left(\begin{matrix}a&b\\c&d\end{matrix}\right), דטרמיננטה זו ad-bc.
3\times 11-\left(-1\right)+4\times 19
פשט.
110
חבר את האיברים כדי להגיע לתוצאה הסופית.