דילוג לתוכן העיקרי
הערך
Tick mark Image
פרק לגורמים
Tick mark Image

בעיות דומות מחיפוש באינטרנט

שתף

det(\left(\begin{matrix}2&1&-1\\0&3&-2\\-3&2&0\end{matrix}\right))
מצא את דטרמיננטת המטריצה באמצעות שיטת האלכסונים.
\left(\begin{matrix}2&1&-1&2&1\\0&3&-2&0&3\\-3&2&0&-3&2\end{matrix}\right)
הרחב את המטריצה המקורית על-ידי חזרה על שתי העמודות הראשונות כעמודה הרביעית והעמודה החמישית.
-2\left(-3\right)=6
החל מהערך השמאלי העליון, הכפל כלפי מטה לאורך האלכסונים וחבר את המכפלות המתקבלות.
-3\times 3\left(-1\right)+2\left(-2\right)\times 2=1
החל מהערך השמאלי התחתון, הכפל כלפי מעלה לאורך האלכסונים וחבר את המכפלות המתקבלות.
6-1
הפחת את הסכום של המכפלות האלכסוניות כלפי מעלה מהסכום של המכפלות האלכסוניות כלפי מטה.
5
החסר ‎1 מ- ‎6.
det(\left(\begin{matrix}2&1&-1\\0&3&-2\\-3&2&0\end{matrix}\right))
מצא את דטרמיננטת המטריצה באמצעות שיטת הפיתוח לפי מינורים (המכונה גם פיתוח לפי קו-פקטורים).
2det(\left(\begin{matrix}3&-2\\2&0\end{matrix}\right))-det(\left(\begin{matrix}0&-2\\-3&0\end{matrix}\right))-det(\left(\begin{matrix}0&3\\-3&2\end{matrix}\right))
כדי לפתח לפי מינורים, הכפל כל רכיב של השורה הראשונה במינור שלו, שהוא הדטרמיננטה של מטריצת 2\times 2 שנוצרת על-ידי מחיקת השורה והעמודה המכילות רכיב זה, ולאחר מכן הכפל בסימן המיקום של הרכיב.
2\left(-2\left(-2\right)\right)-\left(-\left(-3\left(-2\right)\right)\right)-\left(-\left(-3\times 3\right)\right)
עבור מטריצת 2\times 2 של \left(\begin{matrix}a&b\\c&d\end{matrix}\right), דטרמיננטה זו ad-bc.
2\times 4-\left(-6\right)-9
פשט.
5
חבר את האיברים כדי להגיע לתוצאה הסופית.