דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x-y+2=0,x+y-4=0
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x-y+2=0
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x-y=-2
החסר ‎2 משני אגפי המשוואה.
x=y-2
הוסף ‎y לשני אגפי המשוואה.
y-2+y-4=0
השתמש ב- ‎y-2 במקום ‎x במשוואה השניה, ‎x+y-4=0.
2y-2-4=0
הוסף את ‎y ל- ‎y.
2y-6=0
הוסף את ‎-2 ל- ‎-4.
2y=6
הוסף ‎6 לשני אגפי המשוואה.
y=3
חלק את שני האגפים ב- ‎2.
x=3-2
השתמש ב- ‎3 במקום y ב- ‎x=y-2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=1
הוסף את ‎-2 ל- ‎3.
x=1,y=3
המערכת נפתרה כעת.
x-y+2=0,x+y-4=0
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\4\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-2\\4\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-2\\4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-2\right)+\frac{1}{2}\times 4\\-\frac{1}{2}\left(-2\right)+\frac{1}{2}\times 4\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=1,y=3
חלץ את רכיבי המטריצה x ו- y.
x-y+2=0,x+y-4=0
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
x-x-y-y+2+4=0
החסר את ‎x+y-4=0 מ- ‎x-y+2=0 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-y-y+2+4=0
הוסף את ‎x ל- ‎-x. האיברים ‎x ו- ‎-x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-2y+2+4=0
הוסף את ‎-y ל- ‎-y.
-2y+6=0
הוסף את ‎2 ל- ‎4.
-2y=-6
החסר ‎6 משני אגפי המשוואה.
y=3
חלק את שני האגפים ב- ‎-2.
x+3-4=0
השתמש ב- ‎3 במקום y ב- ‎x+y-4=0. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x-1=0
הוסף את ‎3 ל- ‎-4.
x=1
הוסף ‎1 לשני אגפי המשוואה.
x=1,y=3
המערכת נפתרה כעת.