\left\{ \begin{array} { l } { x - 2 = y } \\ { 2 x + 4 = y } \end{array} \right.
פתור עבור x, y
x=-6
y=-8
גרף
שתף
הועתק ללוח
x-2-y=0
שקול את המשוואה הראשונה. החסר y משני האגפים.
x-y=2
הוסף 2 משני הצדדים. כל מספר ועוד אפס שווה לעצמו.
2x+4-y=0
שקול את המשוואה השניה. החסר y משני האגפים.
2x-y=-4
החסר 4 משני האגפים. כל מספר המוחסר מאפס נותן את השלילה שלו.
x-y=2,2x-y=-4
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x-y=2
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=y+2
הוסף y לשני אגפי המשוואה.
2\left(y+2\right)-y=-4
השתמש ב- y+2 במקום x במשוואה השניה, 2x-y=-4.
2y+4-y=-4
הכפל את 2 ב- y+2.
y+4=-4
הוסף את 2y ל- -y.
y=-8
החסר 4 משני אגפי המשוואה.
x=-8+2
השתמש ב- -8 במקום y ב- x=y+2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-6
הוסף את 2 ל- -8.
x=-6,y=-8
המערכת נפתרה כעת.
x-2-y=0
שקול את המשוואה הראשונה. החסר y משני האגפים.
x-y=2
הוסף 2 משני הצדדים. כל מספר ועוד אפס שווה לעצמו.
2x+4-y=0
שקול את המשוואה השניה. החסר y משני האגפים.
2x-y=-4
החסר 4 משני האגפים. כל מספר המוחסר מאפס נותן את השלילה שלו.
x-y=2,2x-y=-4
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&-1\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\right)}&-\frac{-1}{-1-\left(-2\right)}\\-\frac{2}{-1-\left(-2\right)}&\frac{1}{-1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2-4\\-2\times 2-4\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-8\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-6,y=-8
חלץ את רכיבי המטריצה x ו- y.
x-2-y=0
שקול את המשוואה הראשונה. החסר y משני האגפים.
x-y=2
הוסף 2 משני הצדדים. כל מספר ועוד אפס שווה לעצמו.
2x+4-y=0
שקול את המשוואה השניה. החסר y משני האגפים.
2x-y=-4
החסר 4 משני האגפים. כל מספר המוחסר מאפס נותן את השלילה שלו.
x-y=2,2x-y=-4
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
x-2x-y+y=2+4
החסר את 2x-y=-4 מ- x-y=2 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
x-2x=2+4
הוסף את -y ל- y. האיברים -y ו- y מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-x=2+4
הוסף את x ל- -2x.
-x=6
הוסף את 2 ל- 4.
x=-6
חלק את שני האגפים ב- -1.
2\left(-6\right)-y=-4
השתמש ב- -6 במקום x ב- 2x-y=-4. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
-12-y=-4
הכפל את 2 ב- -6.
-y=8
הוסף 12 לשני אגפי המשוואה.
y=-8
חלק את שני האגפים ב- -1.
x=-6,y=-8
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}