\left\{ \begin{array} { l } { x + y = 140 } \\ { \frac { x } { y } = 7 } \end{array} \right.
פתור עבור x, y
x = \frac{245}{2} = 122\frac{1}{2} = 122.5
y = \frac{35}{2} = 17\frac{1}{2} = 17.5
גרף
שתף
הועתק ללוח
x=7y
שקול את המשוואה השניה. המשתנה y אינו יכול להיות שווה ל- 0 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני אגפי המשוואה ב- y.
x-7y=0
החסר 7y משני האגפים.
x+y=140,x-7y=0
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x+y=140
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=-y+140
החסר y משני אגפי המשוואה.
-y+140-7y=0
השתמש ב- -y+140 במקום x במשוואה השניה, x-7y=0.
-8y+140=0
הוסף את -y ל- -7y.
-8y=-140
החסר 140 משני אגפי המשוואה.
y=\frac{35}{2}
חלק את שני האגפים ב- -8.
x=-\frac{35}{2}+140
השתמש ב- \frac{35}{2} במקום y ב- x=-y+140. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{245}{2}
הוסף את 140 ל- -\frac{35}{2}.
x=\frac{245}{2},y=\frac{35}{2}
המערכת נפתרה כעת.
x=7y
שקול את המשוואה השניה. המשתנה y אינו יכול להיות שווה ל- 0 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני אגפי המשוואה ב- y.
x-7y=0
החסר 7y משני האגפים.
x+y=140,x-7y=0
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&1\\1&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}140\\0\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&1\\1&-7\end{matrix}\right))\left(\begin{matrix}1&1\\1&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-7\end{matrix}\right))\left(\begin{matrix}140\\0\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&1\\1&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-7\end{matrix}\right))\left(\begin{matrix}140\\0\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-7\end{matrix}\right))\left(\begin{matrix}140\\0\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-1}&-\frac{1}{-7-1}\\-\frac{1}{-7-1}&\frac{1}{-7-1}\end{matrix}\right)\left(\begin{matrix}140\\0\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{8}&\frac{1}{8}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}140\\0\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{8}\times 140\\\frac{1}{8}\times 140\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{245}{2}\\\frac{35}{2}\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=\frac{245}{2},y=\frac{35}{2}
חלץ את רכיבי המטריצה x ו- y.
x=7y
שקול את המשוואה השניה. המשתנה y אינו יכול להיות שווה ל- 0 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני אגפי המשוואה ב- y.
x-7y=0
החסר 7y משני האגפים.
x+y=140,x-7y=0
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
x-x+y+7y=140
החסר את x-7y=0 מ- x+y=140 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
y+7y=140
הוסף את x ל- -x. האיברים x ו- -x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
8y=140
הוסף את y ל- 7y.
y=\frac{35}{2}
חלק את שני האגפים ב- 8.
x-7\times \frac{35}{2}=0
השתמש ב- \frac{35}{2} במקום y ב- x-7y=0. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x-\frac{245}{2}=0
הכפל את -7 ב- \frac{35}{2}.
x=\frac{245}{2}
הוסף \frac{245}{2} לשני אגפי המשוואה.
x=\frac{245}{2},y=\frac{35}{2}
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}