דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x+y=1,x-y=6
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x+y=1
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=-y+1
החסר ‎y משני אגפי המשוואה.
-y+1-y=6
השתמש ב- ‎-y+1 במקום ‎x במשוואה השניה, ‎x-y=6.
-2y+1=6
הוסף את ‎-y ל- ‎-y.
-2y=5
החסר ‎1 משני אגפי המשוואה.
y=-\frac{5}{2}
חלק את שני האגפים ב- ‎-2.
x=-\left(-\frac{5}{2}\right)+1
השתמש ב- ‎-\frac{5}{2} במקום y ב- ‎x=-y+1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{5}{2}+1
הכפל את ‎-1 ב- ‎-\frac{5}{2}.
x=\frac{7}{2}
הוסף את ‎1 ל- ‎\frac{5}{2}.
x=\frac{7}{2},y=-\frac{5}{2}
המערכת נפתרה כעת.
x+y=1,x-y=6
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\6\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}+\frac{1}{2}\times 6\\\frac{1}{2}-\frac{1}{2}\times 6\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\\-\frac{5}{2}\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=\frac{7}{2},y=-\frac{5}{2}
חלץ את רכיבי המטריצה x ו- y.
x+y=1,x-y=6
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
x-x+y+y=1-6
החסר את ‎x-y=6 מ- ‎x+y=1 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
y+y=1-6
הוסף את ‎x ל- ‎-x. האיברים ‎x ו- ‎-x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
2y=1-6
הוסף את ‎y ל- ‎y.
2y=-5
הוסף את ‎1 ל- ‎-6.
y=-\frac{5}{2}
חלק את שני האגפים ב- ‎2.
x-\left(-\frac{5}{2}\right)=6
השתמש ב- ‎-\frac{5}{2} במקום y ב- ‎x-y=6. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x+\frac{5}{2}=6
הכפל את ‎-1 ב- ‎-\frac{5}{2}.
x=\frac{7}{2}
החסר ‎\frac{5}{2} משני אגפי המשוואה.
x=\frac{7}{2},y=-\frac{5}{2}
המערכת נפתרה כעת.