דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x+y=1,x+2y=6
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x+y=1
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=-y+1
החסר ‎y משני אגפי המשוואה.
-y+1+2y=6
השתמש ב- ‎-y+1 במקום ‎x במשוואה השניה, ‎x+2y=6.
y+1=6
הוסף את ‎-y ל- ‎2y.
y=5
החסר ‎1 משני אגפי המשוואה.
x=-5+1
השתמש ב- ‎5 במקום y ב- ‎x=-y+1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-4
הוסף את ‎1 ל- ‎-5.
x=-4,y=5
המערכת נפתרה כעת.
x+y=1,x+2y=6
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\6\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&1\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-1}&-\frac{1}{2-1}\\-\frac{1}{2-1}&\frac{1}{2-1}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2-6\\-1+6\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\5\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-4,y=5
חלץ את רכיבי המטריצה x ו- y.
x+y=1,x+2y=6
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
x-x+y-2y=1-6
החסר את ‎x+2y=6 מ- ‎x+y=1 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
y-2y=1-6
הוסף את ‎x ל- ‎-x. האיברים ‎x ו- ‎-x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-y=1-6
הוסף את ‎y ל- ‎-2y.
-y=-5
הוסף את ‎1 ל- ‎-6.
y=5
חלק את שני האגפים ב- ‎-1.
x+2\times 5=6
השתמש ב- ‎5 במקום y ב- ‎x+2y=6. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x+10=6
הכפל את ‎2 ב- ‎5.
x=-4
החסר ‎10 משני אגפי המשוואה.
x=-4,y=5
המערכת נפתרה כעת.