דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x+y=0,3x-y=6
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x+y=0
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=-y
החסר ‎y משני אגפי המשוואה.
3\left(-1\right)y-y=6
השתמש ב- ‎-y במקום ‎x במשוואה השניה, ‎3x-y=6.
-3y-y=6
הכפל את ‎3 ב- ‎-y.
-4y=6
הוסף את ‎-3y ל- ‎-y.
y=-\frac{3}{2}
חלק את שני האגפים ב- ‎-4.
x=-\left(-\frac{3}{2}\right)
השתמש ב- ‎-\frac{3}{2} במקום y ב- ‎x=-y. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{3}{2}
הכפל את ‎-1 ב- ‎-\frac{3}{2}.
x=\frac{3}{2},y=-\frac{3}{2}
המערכת נפתרה כעת.
x+y=0,3x-y=6
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\6\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}1&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&1\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-3}&-\frac{1}{-1-3}\\-\frac{3}{-1-3}&\frac{1}{-1-3}\end{matrix}\right)\left(\begin{matrix}0\\6\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}0\\6\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 6\\-\frac{1}{4}\times 6\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\-\frac{3}{2}\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=\frac{3}{2},y=-\frac{3}{2}
חלץ את רכיבי המטריצה x ו- y.
x+y=0,3x-y=6
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3x+3y=0,3x-y=6
כדי להפוך את ‎x ו- ‎3x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎3 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎1.
3x-3x+3y+y=-6
החסר את ‎3x-y=6 מ- ‎3x+3y=0 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
3y+y=-6
הוסף את ‎3x ל- ‎-3x. האיברים ‎3x ו- ‎-3x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
4y=-6
הוסף את ‎3y ל- ‎y.
y=-\frac{3}{2}
חלק את שני האגפים ב- ‎4.
3x-\left(-\frac{3}{2}\right)=6
השתמש ב- ‎-\frac{3}{2} במקום y ב- ‎3x-y=6. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
3x=\frac{9}{2}
החסר ‎\frac{3}{2} משני אגפי המשוואה.
x=\frac{3}{2}
חלק את שני האגפים ב- ‎3.
x=\frac{3}{2},y=-\frac{3}{2}
המערכת נפתרה כעת.