דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x+3-y=0
שקול את המשוואה הראשונה. החסר ‎y משני האגפים.
x-y=-3
החסר ‎3 משני האגפים. כל מספר המוחסר מאפס נותן את השלילה שלו.
x-y=-3,x+y=2
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x-y=-3
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=y-3
הוסף ‎y לשני אגפי המשוואה.
y-3+y=2
השתמש ב- ‎y-3 במקום ‎x במשוואה השניה, ‎x+y=2.
2y-3=2
הוסף את ‎y ל- ‎y.
2y=5
הוסף ‎3 לשני אגפי המשוואה.
y=\frac{5}{2}
חלק את שני האגפים ב- ‎2.
x=\frac{5}{2}-3
השתמש ב- ‎\frac{5}{2} במקום y ב- ‎x=y-3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-\frac{1}{2}
הוסף את ‎-3 ל- ‎\frac{5}{2}.
x=-\frac{1}{2},y=\frac{5}{2}
המערכת נפתרה כעת.
x+3-y=0
שקול את המשוואה הראשונה. החסר ‎y משני האגפים.
x-y=-3
החסר ‎3 משני האגפים. כל מספר המוחסר מאפס נותן את השלילה שלו.
x-y=-3,x+y=2
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-3\right)+\frac{1}{2}\times 2\\-\frac{1}{2}\left(-3\right)+\frac{1}{2}\times 2\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\\frac{5}{2}\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-\frac{1}{2},y=\frac{5}{2}
חלץ את רכיבי המטריצה x ו- y.
x+3-y=0
שקול את המשוואה הראשונה. החסר ‎y משני האגפים.
x-y=-3
החסר ‎3 משני האגפים. כל מספר המוחסר מאפס נותן את השלילה שלו.
x-y=-3,x+y=2
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
x-x-y-y=-3-2
החסר את ‎x+y=2 מ- ‎x-y=-3 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-y-y=-3-2
הוסף את ‎x ל- ‎-x. האיברים ‎x ו- ‎-x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-2y=-3-2
הוסף את ‎-y ל- ‎-y.
-2y=-5
הוסף את ‎-3 ל- ‎-2.
y=\frac{5}{2}
חלק את שני האגפים ב- ‎-2.
x+\frac{5}{2}=2
השתמש ב- ‎\frac{5}{2} במקום y ב- ‎x+y=2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-\frac{1}{2}
החסר ‎\frac{5}{2} משני אגפי המשוואה.
x=-\frac{1}{2},y=\frac{5}{2}
המערכת נפתרה כעת.