דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x-y=-5
שקול את המשוואה השניה. החסר ‎y משני האגפים.
x+2y=1,x-y=-5
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x+2y=1
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=-2y+1
החסר ‎2y משני אגפי המשוואה.
-2y+1-y=-5
השתמש ב- ‎-2y+1 במקום ‎x במשוואה השניה, ‎x-y=-5.
-3y+1=-5
הוסף את ‎-2y ל- ‎-y.
-3y=-6
החסר ‎1 משני אגפי המשוואה.
y=2
חלק את שני האגפים ב- ‎-3.
x=-2\times 2+1
השתמש ב- ‎2 במקום y ב- ‎x=-2y+1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-4+1
הכפל את ‎-2 ב- ‎2.
x=-3
הוסף את ‎1 ל- ‎-4.
x=-3,y=2
המערכת נפתרה כעת.
x-y=-5
שקול את המשוואה השניה. החסר ‎y משני האגפים.
x+2y=1,x-y=-5
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-5\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&2\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{2}{-1-2}\\-\frac{1}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}+\frac{2}{3}\left(-5\right)\\\frac{1}{3}-\frac{1}{3}\left(-5\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-3,y=2
חלץ את רכיבי המטריצה x ו- y.
x-y=-5
שקול את המשוואה השניה. החסר ‎y משני האגפים.
x+2y=1,x-y=-5
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
x-x+2y+y=1+5
החסר את ‎x-y=-5 מ- ‎x+2y=1 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
2y+y=1+5
הוסף את ‎x ל- ‎-x. האיברים ‎x ו- ‎-x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
3y=1+5
הוסף את ‎2y ל- ‎y.
3y=6
הוסף את ‎1 ל- ‎5.
y=2
חלק את שני האגפים ב- ‎3.
x-2=-5
השתמש ב- ‎2 במקום y ב- ‎x-y=-5. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-3
הוסף ‎2 לשני אגפי המשוואה.
x=-3,y=2
המערכת נפתרה כעת.