\left\{ \begin{array} { l } { x + 2 y = - 2 } \\ { 4 y = 1 - 3 x } \end{array} \right.
פתור עבור x, y
x=5
y = -\frac{7}{2} = -3\frac{1}{2} = -3.5
גרף
שתף
הועתק ללוח
4y+3x=1
שקול את המשוואה השניה. הוסף 3x משני הצדדים.
x+2y=-2,3x+4y=1
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x+2y=-2
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=-2y-2
החסר 2y משני אגפי המשוואה.
3\left(-2y-2\right)+4y=1
השתמש ב- -2y-2 במקום x במשוואה השניה, 3x+4y=1.
-6y-6+4y=1
הכפל את 3 ב- -2y-2.
-2y-6=1
הוסף את -6y ל- 4y.
-2y=7
הוסף 6 לשני אגפי המשוואה.
y=-\frac{7}{2}
חלק את שני האגפים ב- -2.
x=-2\left(-\frac{7}{2}\right)-2
השתמש ב- -\frac{7}{2} במקום y ב- x=-2y-2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=7-2
הכפל את -2 ב- -\frac{7}{2}.
x=5
הוסף את -2 ל- 7.
x=5,y=-\frac{7}{2}
המערכת נפתרה כעת.
4y+3x=1
שקול את המשוואה השניה. הוסף 3x משני הצדדים.
x+2y=-2,3x+4y=1
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\1\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}1&2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&2\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2\times 3}&-\frac{2}{4-2\times 3}\\-\frac{3}{4-2\times 3}&\frac{1}{4-2\times 3}\end{matrix}\right)\left(\begin{matrix}-2\\1\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&1\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-2\\1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\left(-2\right)+1\\\frac{3}{2}\left(-2\right)-\frac{1}{2}\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-\frac{7}{2}\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=5,y=-\frac{7}{2}
חלץ את רכיבי המטריצה x ו- y.
4y+3x=1
שקול את המשוואה השניה. הוסף 3x משני הצדדים.
x+2y=-2,3x+4y=1
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3x+3\times 2y=3\left(-2\right),3x+4y=1
כדי להפוך את x ו- 3x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 3 ואת כל האיברים בכל אגף של המשוואה השניה ב- 1.
3x+6y=-6,3x+4y=1
פשט.
3x-3x+6y-4y=-6-1
החסר את 3x+4y=1 מ- 3x+6y=-6 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
6y-4y=-6-1
הוסף את 3x ל- -3x. האיברים 3x ו- -3x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
2y=-6-1
הוסף את 6y ל- -4y.
2y=-7
הוסף את -6 ל- -1.
y=-\frac{7}{2}
חלק את שני האגפים ב- 2.
3x+4\left(-\frac{7}{2}\right)=1
השתמש ב- -\frac{7}{2} במקום y ב- 3x+4y=1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
3x-14=1
הכפל את 4 ב- -\frac{7}{2}.
3x=15
הוסף 14 לשני אגפי המשוואה.
x=5
חלק את שני האגפים ב- 3.
x=5,y=-\frac{7}{2}
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}