\left\{ \begin{array} { l } { 5 x - y = 9 } \\ { 2 x + 4 y = 8 } \end{array} \right.
פתור עבור x, y
x=2
y=1
גרף
שתף
הועתק ללוח
5x-y=9,2x+4y=8
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
5x-y=9
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
5x=y+9
הוסף y לשני אגפי המשוואה.
x=\frac{1}{5}\left(y+9\right)
חלק את שני האגפים ב- 5.
x=\frac{1}{5}y+\frac{9}{5}
הכפל את \frac{1}{5} ב- y+9.
2\left(\frac{1}{5}y+\frac{9}{5}\right)+4y=8
השתמש ב- \frac{9+y}{5} במקום x במשוואה השניה, 2x+4y=8.
\frac{2}{5}y+\frac{18}{5}+4y=8
הכפל את 2 ב- \frac{9+y}{5}.
\frac{22}{5}y+\frac{18}{5}=8
הוסף את \frac{2y}{5} ל- 4y.
\frac{22}{5}y=\frac{22}{5}
החסר \frac{18}{5} משני אגפי המשוואה.
y=1
חלק את שני אגפי המשוואה ב- \frac{22}{5}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{1+9}{5}
השתמש ב- 1 במקום y ב- x=\frac{1}{5}y+\frac{9}{5}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=2
הוסף את \frac{9}{5} ל- \frac{1}{5} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=2,y=1
המערכת נפתרה כעת.
5x-y=9,2x+4y=8
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}5&-1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\8\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}5&-1\\2&4\end{matrix}\right))\left(\begin{matrix}5&-1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&4\end{matrix}\right))\left(\begin{matrix}9\\8\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}5&-1\\2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&4\end{matrix}\right))\left(\begin{matrix}9\\8\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&4\end{matrix}\right))\left(\begin{matrix}9\\8\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-\left(-2\right)}&-\frac{-1}{5\times 4-\left(-2\right)}\\-\frac{2}{5\times 4-\left(-2\right)}&\frac{5}{5\times 4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}9\\8\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{1}{22}\\-\frac{1}{11}&\frac{5}{22}\end{matrix}\right)\left(\begin{matrix}9\\8\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 9+\frac{1}{22}\times 8\\-\frac{1}{11}\times 9+\frac{5}{22}\times 8\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=2,y=1
חלץ את רכיבי המטריצה x ו- y.
5x-y=9,2x+4y=8
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2\times 5x+2\left(-1\right)y=2\times 9,5\times 2x+5\times 4y=5\times 8
כדי להפוך את 5x ו- 2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 2 ואת כל האיברים בכל אגף של המשוואה השניה ב- 5.
10x-2y=18,10x+20y=40
פשט.
10x-10x-2y-20y=18-40
החסר את 10x+20y=40 מ- 10x-2y=18 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-2y-20y=18-40
הוסף את 10x ל- -10x. האיברים 10x ו- -10x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-22y=18-40
הוסף את -2y ל- -20y.
-22y=-22
הוסף את 18 ל- -40.
y=1
חלק את שני האגפים ב- -22.
2x+4=8
השתמש ב- 1 במקום y ב- 2x+4y=8. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
2x=4
החסר 4 משני אגפי המשוואה.
x=2
חלק את שני האגפים ב- 2.
x=2,y=1
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}