\left\{ \begin{array} { l } { 5 = 3 k + b } \\ { - 9 = - 4 k + b } \end{array} \right.
פתור עבור k, b
k=2
b=-1
שתף
הועתק ללוח
3k+b=5
שקול את המשוואה הראשונה. החלף בין הצדדים כך שכל איברי המשתנים יופיעו בצד השמאלי.
-4k+b=-9
שקול את המשוואה השניה. החלף בין הצדדים כך שכל איברי המשתנים יופיעו בצד השמאלי.
3k+b=5,-4k+b=-9
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
3k+b=5
בחר אחת מהמשוואות ופתור אותה עבור k על-ידי בידוד k בצד השמאלי של סימן השוויון.
3k=-b+5
החסר b משני אגפי המשוואה.
k=\frac{1}{3}\left(-b+5\right)
חלק את שני האגפים ב- 3.
k=-\frac{1}{3}b+\frac{5}{3}
הכפל את \frac{1}{3} ב- -b+5.
-4\left(-\frac{1}{3}b+\frac{5}{3}\right)+b=-9
השתמש ב- \frac{-b+5}{3} במקום k במשוואה השניה, -4k+b=-9.
\frac{4}{3}b-\frac{20}{3}+b=-9
הכפל את -4 ב- \frac{-b+5}{3}.
\frac{7}{3}b-\frac{20}{3}=-9
הוסף את \frac{4b}{3} ל- b.
\frac{7}{3}b=-\frac{7}{3}
הוסף \frac{20}{3} לשני אגפי המשוואה.
b=-1
חלק את שני אגפי המשוואה ב- \frac{7}{3}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
k=-\frac{1}{3}\left(-1\right)+\frac{5}{3}
השתמש ב- -1 במקום b ב- k=-\frac{1}{3}b+\frac{5}{3}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את k ישירות.
k=\frac{1+5}{3}
הכפל את -\frac{1}{3} ב- -1.
k=2
הוסף את \frac{5}{3} ל- \frac{1}{3} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
k=2,b=-1
המערכת נפתרה כעת.
3k+b=5
שקול את המשוואה הראשונה. החלף בין הצדדים כך שכל איברי המשתנים יופיעו בצד השמאלי.
-4k+b=-9
שקול את המשוואה השניה. החלף בין הצדדים כך שכל איברי המשתנים יופיעו בצד השמאלי.
3k+b=5,-4k+b=-9
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}5\\-9\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}3&1\\-4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-4\right)}&-\frac{1}{3-\left(-4\right)}\\-\frac{-4}{3-\left(-4\right)}&\frac{3}{3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{1}{7}\\\frac{4}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 5-\frac{1}{7}\left(-9\right)\\\frac{4}{7}\times 5+\frac{3}{7}\left(-9\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
k=2,b=-1
חלץ את רכיבי המטריצה k ו- b.
3k+b=5
שקול את המשוואה הראשונה. החלף בין הצדדים כך שכל איברי המשתנים יופיעו בצד השמאלי.
-4k+b=-9
שקול את המשוואה השניה. החלף בין הצדדים כך שכל איברי המשתנים יופיעו בצד השמאלי.
3k+b=5,-4k+b=-9
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3k+4k+b-b=5+9
החסר את -4k+b=-9 מ- 3k+b=5 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
3k+4k=5+9
הוסף את b ל- -b. האיברים b ו- -b מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
7k=5+9
הוסף את 3k ל- 4k.
7k=14
הוסף את 5 ל- 9.
k=2
חלק את שני האגפים ב- 7.
-4\times 2+b=-9
השתמש ב- 2 במקום k ב- -4k+b=-9. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את b ישירות.
-8+b=-9
הכפל את -4 ב- 2.
b=-1
הוסף 8 לשני אגפי המשוואה.
k=2,b=-1
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}