\left\{ \begin{array} { l } { 4 x - 2 y = 8 } \\ { 2 x + y = 2 } \end{array} \right.
פתור עבור x, y
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
y=-1
גרף
שתף
הועתק ללוח
4x-2y=8,2x+y=2
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
4x-2y=8
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
4x=2y+8
הוסף 2y לשני אגפי המשוואה.
x=\frac{1}{4}\left(2y+8\right)
חלק את שני האגפים ב- 4.
x=\frac{1}{2}y+2
הכפל את \frac{1}{4} ב- 8+2y.
2\left(\frac{1}{2}y+2\right)+y=2
השתמש ב- \frac{y}{2}+2 במקום x במשוואה השניה, 2x+y=2.
y+4+y=2
הכפל את 2 ב- \frac{y}{2}+2.
2y+4=2
הוסף את y ל- y.
2y=-2
החסר 4 משני אגפי המשוואה.
y=-1
חלק את שני האגפים ב- 2.
x=\frac{1}{2}\left(-1\right)+2
השתמש ב- -1 במקום y ב- x=\frac{1}{2}y+2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-\frac{1}{2}+2
הכפל את \frac{1}{2} ב- -1.
x=\frac{3}{2}
הוסף את 2 ל- -\frac{1}{2}.
x=\frac{3}{2},y=-1
המערכת נפתרה כעת.
4x-2y=8,2x+y=2
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}4&-2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\2\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}4&-2\\2&1\end{matrix}\right))\left(\begin{matrix}4&-2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\2&1\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}4&-2\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\2&1\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\2&1\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-2\times 2\right)}&-\frac{-2}{4-\left(-2\times 2\right)}\\-\frac{2}{4-\left(-2\times 2\right)}&\frac{4}{4-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}8\\2\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{4}\\-\frac{1}{4}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}8\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 8+\frac{1}{4}\times 2\\-\frac{1}{4}\times 8+\frac{1}{2}\times 2\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=\frac{3}{2},y=-1
חלץ את רכיבי המטריצה x ו- y.
4x-2y=8,2x+y=2
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2\times 4x+2\left(-2\right)y=2\times 8,4\times 2x+4y=4\times 2
כדי להפוך את 4x ו- 2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 2 ואת כל האיברים בכל אגף של המשוואה השניה ב- 4.
8x-4y=16,8x+4y=8
פשט.
8x-8x-4y-4y=16-8
החסר את 8x+4y=8 מ- 8x-4y=16 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-4y-4y=16-8
הוסף את 8x ל- -8x. האיברים 8x ו- -8x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-8y=16-8
הוסף את -4y ל- -4y.
-8y=8
הוסף את 16 ל- -8.
y=-1
חלק את שני האגפים ב- -8.
2x-1=2
השתמש ב- -1 במקום y ב- 2x+y=2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
2x=3
הוסף 1 לשני אגפי המשוואה.
x=\frac{3}{2}
חלק את שני האגפים ב- 2.
x=\frac{3}{2},y=-1
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}