דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

4x+3y=6,2x-y=8
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
4x+3y=6
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
4x=-3y+6
החסר ‎3y משני אגפי המשוואה.
x=\frac{1}{4}\left(-3y+6\right)
חלק את שני האגפים ב- ‎4.
x=-\frac{3}{4}y+\frac{3}{2}
הכפל את ‎\frac{1}{4} ב- ‎-3y+6.
2\left(-\frac{3}{4}y+\frac{3}{2}\right)-y=8
השתמש ב- ‎-\frac{3y}{4}+\frac{3}{2} במקום ‎x במשוואה השניה, ‎2x-y=8.
-\frac{3}{2}y+3-y=8
הכפל את ‎2 ב- ‎-\frac{3y}{4}+\frac{3}{2}.
-\frac{5}{2}y+3=8
הוסף את ‎-\frac{3y}{2} ל- ‎-y.
-\frac{5}{2}y=5
החסר ‎3 משני אגפי המשוואה.
y=-2
חלק את שני אגפי המשוואה ב- ‎-\frac{5}{2}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=-\frac{3}{4}\left(-2\right)+\frac{3}{2}
השתמש ב- ‎-2 במקום y ב- ‎x=-\frac{3}{4}y+\frac{3}{2}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{3+3}{2}
הכפל את ‎-\frac{3}{4} ב- ‎-2.
x=3
הוסף את ‎\frac{3}{2} ל- ‎\frac{3}{2} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=3,y=-2
המערכת נפתרה כעת.
4x+3y=6,2x-y=8
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}4&3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\8\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}4&3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}4&3\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-3\times 2}&-\frac{3}{4\left(-1\right)-3\times 2}\\-\frac{2}{4\left(-1\right)-3\times 2}&\frac{4}{4\left(-1\right)-3\times 2}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{3}{10}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 6+\frac{3}{10}\times 8\\\frac{1}{5}\times 6-\frac{2}{5}\times 8\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=3,y=-2
חלץ את רכיבי המטריצה x ו- y.
4x+3y=6,2x-y=8
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2\times 4x+2\times 3y=2\times 6,4\times 2x+4\left(-1\right)y=4\times 8
כדי להפוך את ‎4x ו- ‎2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎2 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎4.
8x+6y=12,8x-4y=32
פשט.
8x-8x+6y+4y=12-32
החסר את ‎8x-4y=32 מ- ‎8x+6y=12 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
6y+4y=12-32
הוסף את ‎8x ל- ‎-8x. האיברים ‎8x ו- ‎-8x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
10y=12-32
הוסף את ‎6y ל- ‎4y.
10y=-20
הוסף את ‎12 ל- ‎-32.
y=-2
חלק את שני האגפים ב- ‎10.
2x-\left(-2\right)=8
השתמש ב- ‎-2 במקום y ב- ‎2x-y=8. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
2x=6
החסר ‎2 משני אגפי המשוואה.
x=3
חלק את שני האגפים ב- ‎2.
x=3,y=-2
המערכת נפתרה כעת.