דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

3x-y=6,5x+y=10
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
3x-y=6
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
3x=y+6
הוסף ‎y לשני אגפי המשוואה.
x=\frac{1}{3}\left(y+6\right)
חלק את שני האגפים ב- ‎3.
x=\frac{1}{3}y+2
הכפל את ‎\frac{1}{3} ב- ‎y+6.
5\left(\frac{1}{3}y+2\right)+y=10
השתמש ב- ‎\frac{y}{3}+2 במקום ‎x במשוואה השניה, ‎5x+y=10.
\frac{5}{3}y+10+y=10
הכפל את ‎5 ב- ‎\frac{y}{3}+2.
\frac{8}{3}y+10=10
הוסף את ‎\frac{5y}{3} ל- ‎y.
\frac{8}{3}y=0
החסר ‎10 משני אגפי המשוואה.
y=0
חלק את שני אגפי המשוואה ב- ‎\frac{8}{3}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=2
השתמש ב- ‎0 במקום y ב- ‎x=\frac{1}{3}y+2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=2,y=0
המערכת נפתרה כעת.
3x-y=6,5x+y=10
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}3&-1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\10\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}3&-1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}3&-1\\5&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-5\right)}&-\frac{-1}{3-\left(-5\right)}\\-\frac{5}{3-\left(-5\right)}&\frac{3}{3-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\-\frac{5}{8}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 6+\frac{1}{8}\times 10\\-\frac{5}{8}\times 6+\frac{3}{8}\times 10\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=2,y=0
חלץ את רכיבי המטריצה x ו- y.
3x-y=6,5x+y=10
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
5\times 3x+5\left(-1\right)y=5\times 6,3\times 5x+3y=3\times 10
כדי להפוך את ‎3x ו- ‎5x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎5 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎3.
15x-5y=30,15x+3y=30
פשט.
15x-15x-5y-3y=30-30
החסר את ‎15x+3y=30 מ- ‎15x-5y=30 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-5y-3y=30-30
הוסף את ‎15x ל- ‎-15x. האיברים ‎15x ו- ‎-15x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-8y=30-30
הוסף את ‎-5y ל- ‎-3y.
-8y=0
הוסף את ‎30 ל- ‎-30.
y=0
חלק את שני האגפים ב- ‎-8.
5x=10
השתמש ב- ‎0 במקום y ב- ‎5x+y=10. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=2
חלק את שני האגפים ב- ‎5.
x=2,y=0
המערכת נפתרה כעת.