\left\{ \begin{array} { l } { 3 x - 5 y = - 16 } \\ { 2 x - 2 y = - 4 } \end{array} \right.
פתור עבור x, y
x=3
y=5
גרף
שתף
הועתק ללוח
3x-5y=-16,2x-2y=-4
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
3x-5y=-16
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
3x=5y-16
הוסף 5y לשני אגפי המשוואה.
x=\frac{1}{3}\left(5y-16\right)
חלק את שני האגפים ב- 3.
x=\frac{5}{3}y-\frac{16}{3}
הכפל את \frac{1}{3} ב- 5y-16.
2\left(\frac{5}{3}y-\frac{16}{3}\right)-2y=-4
השתמש ב- \frac{5y-16}{3} במקום x במשוואה השניה, 2x-2y=-4.
\frac{10}{3}y-\frac{32}{3}-2y=-4
הכפל את 2 ב- \frac{5y-16}{3}.
\frac{4}{3}y-\frac{32}{3}=-4
הוסף את \frac{10y}{3} ל- -2y.
\frac{4}{3}y=\frac{20}{3}
הוסף \frac{32}{3} לשני אגפי המשוואה.
y=5
חלק את שני אגפי המשוואה ב- \frac{4}{3}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{5}{3}\times 5-\frac{16}{3}
השתמש ב- 5 במקום y ב- x=\frac{5}{3}y-\frac{16}{3}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{25-16}{3}
הכפל את \frac{5}{3} ב- 5.
x=3
הוסף את -\frac{16}{3} ל- \frac{25}{3} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=3,y=5
המערכת נפתרה כעת.
3x-5y=-16,2x-2y=-4
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\-4\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right))\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right))\left(\begin{matrix}-16\\-4\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}3&-5\\2&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right))\left(\begin{matrix}-16\\-4\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right))\left(\begin{matrix}-16\\-4\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-5\times 2\right)}&-\frac{-5}{3\left(-2\right)-\left(-5\times 2\right)}\\-\frac{2}{3\left(-2\right)-\left(-5\times 2\right)}&\frac{3}{3\left(-2\right)-\left(-5\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-16\\-4\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{5}{4}\\-\frac{1}{2}&\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}-16\\-4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-16\right)+\frac{5}{4}\left(-4\right)\\-\frac{1}{2}\left(-16\right)+\frac{3}{4}\left(-4\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=3,y=5
חלץ את רכיבי המטריצה x ו- y.
3x-5y=-16,2x-2y=-4
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2\times 3x+2\left(-5\right)y=2\left(-16\right),3\times 2x+3\left(-2\right)y=3\left(-4\right)
כדי להפוך את 3x ו- 2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 2 ואת כל האיברים בכל אגף של המשוואה השניה ב- 3.
6x-10y=-32,6x-6y=-12
פשט.
6x-6x-10y+6y=-32+12
החסר את 6x-6y=-12 מ- 6x-10y=-32 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-10y+6y=-32+12
הוסף את 6x ל- -6x. האיברים 6x ו- -6x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-4y=-32+12
הוסף את -10y ל- 6y.
-4y=-20
הוסף את -32 ל- 12.
y=5
חלק את שני האגפים ב- -4.
2x-2\times 5=-4
השתמש ב- 5 במקום y ב- 2x-2y=-4. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
2x-10=-4
הכפל את -2 ב- 5.
2x=6
הוסף 10 לשני אגפי המשוואה.
x=3
חלק את שני האגפים ב- 2.
x=3,y=5
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}