דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

3x-4y=-1,x-6y=-5
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
3x-4y=-1
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
3x=4y-1
הוסף ‎4y לשני אגפי המשוואה.
x=\frac{1}{3}\left(4y-1\right)
חלק את שני האגפים ב- ‎3.
x=\frac{4}{3}y-\frac{1}{3}
הכפל את ‎\frac{1}{3} ב- ‎4y-1.
\frac{4}{3}y-\frac{1}{3}-6y=-5
השתמש ב- ‎\frac{4y-1}{3} במקום ‎x במשוואה השניה, ‎x-6y=-5.
-\frac{14}{3}y-\frac{1}{3}=-5
הוסף את ‎\frac{4y}{3} ל- ‎-6y.
-\frac{14}{3}y=-\frac{14}{3}
הוסף ‎\frac{1}{3} לשני אגפי המשוואה.
y=1
חלק את שני אגפי המשוואה ב- ‎-\frac{14}{3}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{4-1}{3}
השתמש ב- ‎1 במקום y ב- ‎x=\frac{4}{3}y-\frac{1}{3}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=1
הוסף את ‎-\frac{1}{3} ל- ‎\frac{4}{3} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=1,y=1
המערכת נפתרה כעת.
3x-4y=-1,x-6y=-5
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-5\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right))\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}3&-4\\1&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{3\left(-6\right)-\left(-4\right)}&-\frac{-4}{3\left(-6\right)-\left(-4\right)}\\-\frac{1}{3\left(-6\right)-\left(-4\right)}&\frac{3}{3\left(-6\right)-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-1\\-5\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&-\frac{2}{7}\\\frac{1}{14}&-\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}-1\\-5\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\left(-1\right)-\frac{2}{7}\left(-5\right)\\\frac{1}{14}\left(-1\right)-\frac{3}{14}\left(-5\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=1,y=1
חלץ את רכיבי המטריצה x ו- y.
3x-4y=-1,x-6y=-5
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3x-4y=-1,3x+3\left(-6\right)y=3\left(-5\right)
כדי להפוך את ‎3x ו- ‎x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎1 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎3.
3x-4y=-1,3x-18y=-15
פשט.
3x-3x-4y+18y=-1+15
החסר את ‎3x-18y=-15 מ- ‎3x-4y=-1 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-4y+18y=-1+15
הוסף את ‎3x ל- ‎-3x. האיברים ‎3x ו- ‎-3x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
14y=-1+15
הוסף את ‎-4y ל- ‎18y.
14y=14
הוסף את ‎-1 ל- ‎15.
y=1
חלק את שני האגפים ב- ‎14.
x-6=-5
השתמש ב- ‎1 במקום y ב- ‎x-6y=-5. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=1
הוסף ‎6 לשני אגפי המשוואה.
x=1,y=1
המערכת נפתרה כעת.