דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

3x+2y=7,2x-y=7
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
3x+2y=7
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
3x=-2y+7
החסר ‎2y משני אגפי המשוואה.
x=\frac{1}{3}\left(-2y+7\right)
חלק את שני האגפים ב- ‎3.
x=-\frac{2}{3}y+\frac{7}{3}
הכפל את ‎\frac{1}{3} ב- ‎-2y+7.
2\left(-\frac{2}{3}y+\frac{7}{3}\right)-y=7
השתמש ב- ‎\frac{-2y+7}{3} במקום ‎x במשוואה השניה, ‎2x-y=7.
-\frac{4}{3}y+\frac{14}{3}-y=7
הכפל את ‎2 ב- ‎\frac{-2y+7}{3}.
-\frac{7}{3}y+\frac{14}{3}=7
הוסף את ‎-\frac{4y}{3} ל- ‎-y.
-\frac{7}{3}y=\frac{7}{3}
החסר ‎\frac{14}{3} משני אגפי המשוואה.
y=-1
חלק את שני אגפי המשוואה ב- ‎-\frac{7}{3}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=-\frac{2}{3}\left(-1\right)+\frac{7}{3}
השתמש ב- ‎-1 במקום y ב- ‎x=-\frac{2}{3}y+\frac{7}{3}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{2+7}{3}
הכפל את ‎-\frac{2}{3} ב- ‎-1.
x=3
הוסף את ‎\frac{7}{3} ל- ‎\frac{2}{3} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=3,y=-1
המערכת נפתרה כעת.
3x+2y=7,2x-y=7
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\7\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}3&2\\2&-1\end{matrix}\right))\left(\begin{matrix}3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}3&2\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-2\times 2}&-\frac{2}{3\left(-1\right)-2\times 2}\\-\frac{2}{3\left(-1\right)-2\times 2}&\frac{3}{3\left(-1\right)-2\times 2}\end{matrix}\right)\left(\begin{matrix}7\\7\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\\frac{2}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}7\\7\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 7+\frac{2}{7}\times 7\\\frac{2}{7}\times 7-\frac{3}{7}\times 7\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=3,y=-1
חלץ את רכיבי המטריצה x ו- y.
3x+2y=7,2x-y=7
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2\times 3x+2\times 2y=2\times 7,3\times 2x+3\left(-1\right)y=3\times 7
כדי להפוך את ‎3x ו- ‎2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎2 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎3.
6x+4y=14,6x-3y=21
פשט.
6x-6x+4y+3y=14-21
החסר את ‎6x-3y=21 מ- ‎6x+4y=14 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
4y+3y=14-21
הוסף את ‎6x ל- ‎-6x. האיברים ‎6x ו- ‎-6x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
7y=14-21
הוסף את ‎4y ל- ‎3y.
7y=-7
הוסף את ‎14 ל- ‎-21.
y=-1
חלק את שני האגפים ב- ‎7.
2x-\left(-1\right)=7
השתמש ב- ‎-1 במקום y ב- ‎2x-y=7. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
2x=6
החסר ‎1 משני אגפי המשוואה.
x=3
חלק את שני האגפים ב- ‎2.
x=3,y=-1
המערכת נפתרה כעת.