דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

2x-y=6,x+y=-3
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
2x-y=6
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
2x=y+6
הוסף ‎y לשני אגפי המשוואה.
x=\frac{1}{2}\left(y+6\right)
חלק את שני האגפים ב- ‎2.
x=\frac{1}{2}y+3
הכפל את ‎\frac{1}{2} ב- ‎y+6.
\frac{1}{2}y+3+y=-3
השתמש ב- ‎\frac{y}{2}+3 במקום ‎x במשוואה השניה, ‎x+y=-3.
\frac{3}{2}y+3=-3
הוסף את ‎\frac{y}{2} ל- ‎y.
\frac{3}{2}y=-6
החסר ‎3 משני אגפי המשוואה.
y=-4
חלק את שני אגפי המשוואה ב- ‎\frac{3}{2}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{1}{2}\left(-4\right)+3
השתמש ב- ‎-4 במקום y ב- ‎x=\frac{1}{2}y+3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-2+3
הכפל את ‎\frac{1}{2} ב- ‎-4.
x=1
הוסף את ‎3 ל- ‎-2.
x=1,y=-4
המערכת נפתרה כעת.
2x-y=6,x+y=-3
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}2&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-3\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}2&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}2&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-1\right)}&-\frac{-1}{2-\left(-1\right)}\\-\frac{1}{2-\left(-1\right)}&\frac{2}{2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}6\\-3\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}6\\-3\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 6+\frac{1}{3}\left(-3\right)\\-\frac{1}{3}\times 6+\frac{2}{3}\left(-3\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=1,y=-4
חלץ את רכיבי המטריצה x ו- y.
2x-y=6,x+y=-3
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2x-y=6,2x+2y=2\left(-3\right)
כדי להפוך את ‎2x ו- ‎x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎1 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎2.
2x-y=6,2x+2y=-6
פשט.
2x-2x-y-2y=6+6
החסר את ‎2x+2y=-6 מ- ‎2x-y=6 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-y-2y=6+6
הוסף את ‎2x ל- ‎-2x. האיברים ‎2x ו- ‎-2x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-3y=6+6
הוסף את ‎-y ל- ‎-2y.
-3y=12
הוסף את ‎6 ל- ‎6.
y=-4
חלק את שני האגפים ב- ‎-3.
x-4=-3
השתמש ב- ‎-4 במקום y ב- ‎x+y=-3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=1
הוסף ‎4 לשני אגפי המשוואה.
x=1,y=-4
המערכת נפתרה כעת.