\left\{ \begin{array} { l } { 2 x - y = 2 } \\ { 3 x = 2 ( 5 - y ) } \end{array} \right.
פתור עבור x, y
x=2
y=2
גרף
שתף
הועתק ללוח
3x=10-2y
שקול את המשוואה השניה. השתמש בחוק הפילוג כדי להכפיל את 2 ב- 5-y.
3x+2y=10
הוסף 2y משני הצדדים.
2x-y=2,3x+2y=10
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
2x-y=2
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
2x=y+2
הוסף y לשני אגפי המשוואה.
x=\frac{1}{2}\left(y+2\right)
חלק את שני האגפים ב- 2.
x=\frac{1}{2}y+1
הכפל את \frac{1}{2} ב- y+2.
3\left(\frac{1}{2}y+1\right)+2y=10
השתמש ב- \frac{y}{2}+1 במקום x במשוואה השניה, 3x+2y=10.
\frac{3}{2}y+3+2y=10
הכפל את 3 ב- \frac{y}{2}+1.
\frac{7}{2}y+3=10
הוסף את \frac{3y}{2} ל- 2y.
\frac{7}{2}y=7
החסר 3 משני אגפי המשוואה.
y=2
חלק את שני אגפי המשוואה ב- \frac{7}{2}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{1}{2}\times 2+1
השתמש ב- 2 במקום y ב- x=\frac{1}{2}y+1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=1+1
הכפל את \frac{1}{2} ב- 2.
x=2
הוסף את 1 ל- 1.
x=2,y=2
המערכת נפתרה כעת.
3x=10-2y
שקול את המשוואה השניה. השתמש בחוק הפילוג כדי להכפיל את 2 ב- 5-y.
3x+2y=10
הוסף 2y משני הצדדים.
2x-y=2,3x+2y=10
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}2&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\10\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}2&-1\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\right)}&-\frac{-1}{2\times 2-\left(-3\right)}\\-\frac{3}{2\times 2-\left(-3\right)}&\frac{2}{2\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
עבור מטריצת 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{1}{7}\\-\frac{3}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 2+\frac{1}{7}\times 10\\-\frac{3}{7}\times 2+\frac{2}{7}\times 10\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=2,y=2
חלץ את רכיבי המטריצה x ו- y.
3x=10-2y
שקול את המשוואה השניה. השתמש בחוק הפילוג כדי להכפיל את 2 ב- 5-y.
3x+2y=10
הוסף 2y משני הצדדים.
2x-y=2,3x+2y=10
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3\times 2x+3\left(-1\right)y=3\times 2,2\times 3x+2\times 2y=2\times 10
כדי להפוך את 2x ו- 3x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 3 ואת כל האיברים בכל אגף של המשוואה השניה ב- 2.
6x-3y=6,6x+4y=20
פשט.
6x-6x-3y-4y=6-20
החסר את 6x+4y=20 מ- 6x-3y=6 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-3y-4y=6-20
הוסף את 6x ל- -6x. האיברים 6x ו- -6x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-7y=6-20
הוסף את -3y ל- -4y.
-7y=-14
הוסף את 6 ל- -20.
y=2
חלק את שני האגפים ב- -7.
3x+2\times 2=10
השתמש ב- 2 במקום y ב- 3x+2y=10. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
3x+4=10
הכפל את 2 ב- 2.
3x=6
החסר 4 משני אגפי המשוואה.
x=2
חלק את שני האגפים ב- 3.
x=2,y=2
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}