\left\{ \begin{array} { l } { 2 x - 5 y = - 3 } \\ { - 4 x + y = - 3 } \end{array} \right.
פתור עבור x, y
x=1
y=1
גרף
שתף
הועתק ללוח
2x-5y=-3,-4x+y=-3
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
2x-5y=-3
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
2x=5y-3
הוסף 5y לשני אגפי המשוואה.
x=\frac{1}{2}\left(5y-3\right)
חלק את שני האגפים ב- 2.
x=\frac{5}{2}y-\frac{3}{2}
הכפל את \frac{1}{2} ב- 5y-3.
-4\left(\frac{5}{2}y-\frac{3}{2}\right)+y=-3
השתמש ב- \frac{5y-3}{2} במקום x במשוואה השניה, -4x+y=-3.
-10y+6+y=-3
הכפל את -4 ב- \frac{5y-3}{2}.
-9y+6=-3
הוסף את -10y ל- y.
-9y=-9
החסר 6 משני אגפי המשוואה.
y=1
חלק את שני האגפים ב- -9.
x=\frac{5-3}{2}
השתמש ב- 1 במקום y ב- x=\frac{5}{2}y-\frac{3}{2}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=1
הוסף את -\frac{3}{2} ל- \frac{5}{2} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=1,y=1
המערכת נפתרה כעת.
2x-5y=-3,-4x+y=-3
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}2&-5\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-3\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}2&-5\\-4&1\end{matrix}\right))\left(\begin{matrix}2&-5\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\-4&1\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}2&-5\\-4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\-4&1\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\-4&1\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-5\left(-4\right)\right)}&-\frac{-5}{2-\left(-5\left(-4\right)\right)}\\-\frac{-4}{2-\left(-5\left(-4\right)\right)}&\frac{2}{2-\left(-5\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}-3\\-3\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{18}&-\frac{5}{18}\\-\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}-3\\-3\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{18}\left(-3\right)-\frac{5}{18}\left(-3\right)\\-\frac{2}{9}\left(-3\right)-\frac{1}{9}\left(-3\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=1,y=1
חלץ את רכיבי המטריצה x ו- y.
2x-5y=-3,-4x+y=-3
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
-4\times 2x-4\left(-5\right)y=-4\left(-3\right),2\left(-4\right)x+2y=2\left(-3\right)
כדי להפוך את 2x ו- -4x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- -4 ואת כל האיברים בכל אגף של המשוואה השניה ב- 2.
-8x+20y=12,-8x+2y=-6
פשט.
-8x+8x+20y-2y=12+6
החסר את -8x+2y=-6 מ- -8x+20y=12 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
20y-2y=12+6
הוסף את -8x ל- 8x. האיברים -8x ו- 8x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
18y=12+6
הוסף את 20y ל- -2y.
18y=18
הוסף את 12 ל- 6.
y=1
חלק את שני האגפים ב- 18.
-4x+1=-3
השתמש ב- 1 במקום y ב- -4x+y=-3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
-4x=-4
החסר 1 משני אגפי המשוואה.
x=1
חלק את שני האגפים ב- -4.
x=1,y=1
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}