דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

2x-3y=5,3x-2y=5
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
2x-3y=5
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
2x=3y+5
הוסף ‎3y לשני אגפי המשוואה.
x=\frac{1}{2}\left(3y+5\right)
חלק את שני האגפים ב- ‎2.
x=\frac{3}{2}y+\frac{5}{2}
הכפל את ‎\frac{1}{2} ב- ‎3y+5.
3\left(\frac{3}{2}y+\frac{5}{2}\right)-2y=5
השתמש ב- ‎\frac{3y+5}{2} במקום ‎x במשוואה השניה, ‎3x-2y=5.
\frac{9}{2}y+\frac{15}{2}-2y=5
הכפל את ‎3 ב- ‎\frac{3y+5}{2}.
\frac{5}{2}y+\frac{15}{2}=5
הוסף את ‎\frac{9y}{2} ל- ‎-2y.
\frac{5}{2}y=-\frac{5}{2}
החסר ‎\frac{15}{2} משני אגפי המשוואה.
y=-1
חלק את שני אגפי המשוואה ב- ‎\frac{5}{2}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{3}{2}\left(-1\right)+\frac{5}{2}
השתמש ב- ‎-1 במקום y ב- ‎x=\frac{3}{2}y+\frac{5}{2}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{-3+5}{2}
הכפל את ‎\frac{3}{2} ב- ‎-1.
x=1
הוסף את ‎\frac{5}{2} ל- ‎-\frac{3}{2} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=1,y=-1
המערכת נפתרה כעת.
2x-3y=5,3x-2y=5
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}2&-3\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-3\times 3\right)}&-\frac{-3}{2\left(-2\right)-\left(-3\times 3\right)}\\-\frac{3}{2\left(-2\right)-\left(-3\times 3\right)}&\frac{2}{2\left(-2\right)-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{5}\\-\frac{3}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 5+\frac{3}{5}\times 5\\-\frac{3}{5}\times 5+\frac{2}{5}\times 5\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=1,y=-1
חלץ את רכיבי המטריצה x ו- y.
2x-3y=5,3x-2y=5
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3\times 2x+3\left(-3\right)y=3\times 5,2\times 3x+2\left(-2\right)y=2\times 5
כדי להפוך את ‎2x ו- ‎3x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎3 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎2.
6x-9y=15,6x-4y=10
פשט.
6x-6x-9y+4y=15-10
החסר את ‎6x-4y=10 מ- ‎6x-9y=15 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-9y+4y=15-10
הוסף את ‎6x ל- ‎-6x. האיברים ‎6x ו- ‎-6x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-5y=15-10
הוסף את ‎-9y ל- ‎4y.
-5y=5
הוסף את ‎15 ל- ‎-10.
y=-1
חלק את שני האגפים ב- ‎-5.
3x-2\left(-1\right)=5
השתמש ב- ‎-1 במקום y ב- ‎3x-2y=5. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
3x+2=5
הכפל את ‎-2 ב- ‎-1.
3x=3
החסר ‎2 משני אגפי המשוואה.
x=1
חלק את שני האגפים ב- ‎3.
x=1,y=-1
המערכת נפתרה כעת.