\left\{ \begin{array} { l } { - 4 x - 2 y = - 16 } \\ { 7 x - 5 y = 11 } \end{array} \right.
פתור עבור x, y
x=3
y=2
גרף
שתף
הועתק ללוח
-4x-2y=-16,7x-5y=11
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
-4x-2y=-16
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
-4x=2y-16
הוסף 2y לשני אגפי המשוואה.
x=-\frac{1}{4}\left(2y-16\right)
חלק את שני האגפים ב- -4.
x=-\frac{1}{2}y+4
הכפל את -\frac{1}{4} ב- -16+2y.
7\left(-\frac{1}{2}y+4\right)-5y=11
השתמש ב- -\frac{y}{2}+4 במקום x במשוואה השניה, 7x-5y=11.
-\frac{7}{2}y+28-5y=11
הכפל את 7 ב- -\frac{y}{2}+4.
-\frac{17}{2}y+28=11
הוסף את -\frac{7y}{2} ל- -5y.
-\frac{17}{2}y=-17
החסר 28 משני אגפי המשוואה.
y=2
חלק את שני אגפי המשוואה ב- -\frac{17}{2}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=-\frac{1}{2}\times 2+4
השתמש ב- 2 במקום y ב- x=-\frac{1}{2}y+4. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-1+4
הכפל את -\frac{1}{2} ב- 2.
x=3
הוסף את 4 ל- -1.
x=3,y=2
המערכת נפתרה כעת.
-4x-2y=-16,7x-5y=11
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\11\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-16\\11\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-16\\11\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-16\\11\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-4\left(-5\right)-\left(-2\times 7\right)}&-\frac{-2}{-4\left(-5\right)-\left(-2\times 7\right)}\\-\frac{7}{-4\left(-5\right)-\left(-2\times 7\right)}&-\frac{4}{-4\left(-5\right)-\left(-2\times 7\right)}\end{matrix}\right)\left(\begin{matrix}-16\\11\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{34}&\frac{1}{17}\\-\frac{7}{34}&-\frac{2}{17}\end{matrix}\right)\left(\begin{matrix}-16\\11\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{34}\left(-16\right)+\frac{1}{17}\times 11\\-\frac{7}{34}\left(-16\right)-\frac{2}{17}\times 11\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=3,y=2
חלץ את רכיבי המטריצה x ו- y.
-4x-2y=-16,7x-5y=11
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
7\left(-4\right)x+7\left(-2\right)y=7\left(-16\right),-4\times 7x-4\left(-5\right)y=-4\times 11
כדי להפוך את -4x ו- 7x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 7 ואת כל האיברים בכל אגף של המשוואה השניה ב- -4.
-28x-14y=-112,-28x+20y=-44
פשט.
-28x+28x-14y-20y=-112+44
החסר את -28x+20y=-44 מ- -28x-14y=-112 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-14y-20y=-112+44
הוסף את -28x ל- 28x. האיברים -28x ו- 28x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-34y=-112+44
הוסף את -14y ל- -20y.
-34y=-68
הוסף את -112 ל- 44.
y=2
חלק את שני האגפים ב- -34.
7x-5\times 2=11
השתמש ב- 2 במקום y ב- 7x-5y=11. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
7x-10=11
הכפל את -5 ב- 2.
7x=21
הוסף 10 לשני אגפי המשוואה.
x=3
חלק את שני האגפים ב- 7.
x=3,y=2
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}