\left\{ \begin{array} { c } { x + 2 y = 1 } \\ { - 3 x + y = - 10 } \end{array} \right.
פתור עבור x, y
x=3
y=-1
גרף
שתף
הועתק ללוח
x+2y=1,-3x+y=-10
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x+2y=1
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=-2y+1
החסר 2y משני אגפי המשוואה.
-3\left(-2y+1\right)+y=-10
השתמש ב- -2y+1 במקום x במשוואה השניה, -3x+y=-10.
6y-3+y=-10
הכפל את -3 ב- -2y+1.
7y-3=-10
הוסף את 6y ל- y.
7y=-7
הוסף 3 לשני אגפי המשוואה.
y=-1
חלק את שני האגפים ב- 7.
x=-2\left(-1\right)+1
השתמש ב- -1 במקום y ב- x=-2y+1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=2+1
הכפל את -2 ב- -1.
x=3
הוסף את 1 ל- 2.
x=3,y=-1
המערכת נפתרה כעת.
x+2y=1,-3x+y=-10
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-10\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&2\\-3&1\end{matrix}\right))\left(\begin{matrix}1&2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-3&1\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&2\\-3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-3&1\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-3&1\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-3\right)}&-\frac{2}{1-2\left(-3\right)}\\-\frac{-3}{1-2\left(-3\right)}&\frac{1}{1-2\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{2}{7}\\\frac{3}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}-\frac{2}{7}\left(-10\right)\\\frac{3}{7}+\frac{1}{7}\left(-10\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=3,y=-1
חלץ את רכיבי המטריצה x ו- y.
x+2y=1,-3x+y=-10
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
-3x-3\times 2y=-3,-3x+y=-10
כדי להפוך את x ו- -3x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- -3 ואת כל האיברים בכל אגף של המשוואה השניה ב- 1.
-3x-6y=-3,-3x+y=-10
פשט.
-3x+3x-6y-y=-3+10
החסר את -3x+y=-10 מ- -3x-6y=-3 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-6y-y=-3+10
הוסף את -3x ל- 3x. האיברים -3x ו- 3x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-7y=-3+10
הוסף את -6y ל- -y.
-7y=7
הוסף את -3 ל- 10.
y=-1
חלק את שני האגפים ב- -7.
-3x-1=-10
השתמש ב- -1 במקום y ב- -3x+y=-10. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
-3x=-9
הוסף 1 לשני אגפי המשוואה.
x=3
חלק את שני האגפים ב- -3.
x=3,y=-1
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}