\left\{ \begin{array} { c } { 2 x - y = 4 } \\ { 4 x + 3 y = 3 } \end{array} \right.
פתור עבור x, y
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
y=-1
גרף
שתף
הועתק ללוח
2x-y=4,4x+3y=3
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
2x-y=4
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
2x=y+4
הוסף y לשני אגפי המשוואה.
x=\frac{1}{2}\left(y+4\right)
חלק את שני האגפים ב- 2.
x=\frac{1}{2}y+2
הכפל את \frac{1}{2} ב- y+4.
4\left(\frac{1}{2}y+2\right)+3y=3
השתמש ב- \frac{y}{2}+2 במקום x במשוואה השניה, 4x+3y=3.
2y+8+3y=3
הכפל את 4 ב- \frac{y}{2}+2.
5y+8=3
הוסף את 2y ל- 3y.
5y=-5
החסר 8 משני אגפי המשוואה.
y=-1
חלק את שני האגפים ב- 5.
x=\frac{1}{2}\left(-1\right)+2
השתמש ב- -1 במקום y ב- x=\frac{1}{2}y+2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-\frac{1}{2}+2
הכפל את \frac{1}{2} ב- -1.
x=\frac{3}{2}
הוסף את 2 ל- -\frac{1}{2}.
x=\frac{3}{2},y=-1
המערכת נפתרה כעת.
2x-y=4,4x+3y=3
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}2&-1\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}2&-1\\4&3\end{matrix}\right))\left(\begin{matrix}2&-1\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&3\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}2&-1\\4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&3\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&3\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-4\right)}&-\frac{-1}{2\times 3-\left(-4\right)}\\-\frac{4}{2\times 3-\left(-4\right)}&\frac{2}{2\times 3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&\frac{1}{10}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 4+\frac{1}{10}\times 3\\-\frac{2}{5}\times 4+\frac{1}{5}\times 3\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=\frac{3}{2},y=-1
חלץ את רכיבי המטריצה x ו- y.
2x-y=4,4x+3y=3
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
4\times 2x+4\left(-1\right)y=4\times 4,2\times 4x+2\times 3y=2\times 3
כדי להפוך את 2x ו- 4x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 4 ואת כל האיברים בכל אגף של המשוואה השניה ב- 2.
8x-4y=16,8x+6y=6
פשט.
8x-8x-4y-6y=16-6
החסר את 8x+6y=6 מ- 8x-4y=16 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-4y-6y=16-6
הוסף את 8x ל- -8x. האיברים 8x ו- -8x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-10y=16-6
הוסף את -4y ל- -6y.
-10y=10
הוסף את 16 ל- -6.
y=-1
חלק את שני האגפים ב- -10.
4x+3\left(-1\right)=3
השתמש ב- -1 במקום y ב- 4x+3y=3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
4x-3=3
הכפל את 3 ב- -1.
4x=6
הוסף 3 לשני אגפי המשוואה.
x=\frac{3}{2}
חלק את שני האגפים ב- 4.
x=\frac{3}{2},y=-1
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}