\left\{ \begin{array} { c } { 2 x + 3 y = 13 } \\ { - 6 x + y = 11 } \end{array} \right.
פתור עבור x, y
x=-1
y=5
גרף
שתף
הועתק ללוח
2x+3y=13,-6x+y=11
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
2x+3y=13
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
2x=-3y+13
החסר 3y משני אגפי המשוואה.
x=\frac{1}{2}\left(-3y+13\right)
חלק את שני האגפים ב- 2.
x=-\frac{3}{2}y+\frac{13}{2}
הכפל את \frac{1}{2} ב- -3y+13.
-6\left(-\frac{3}{2}y+\frac{13}{2}\right)+y=11
השתמש ב- \frac{-3y+13}{2} במקום x במשוואה השניה, -6x+y=11.
9y-39+y=11
הכפל את -6 ב- \frac{-3y+13}{2}.
10y-39=11
הוסף את 9y ל- y.
10y=50
הוסף 39 לשני אגפי המשוואה.
y=5
חלק את שני האגפים ב- 10.
x=-\frac{3}{2}\times 5+\frac{13}{2}
השתמש ב- 5 במקום y ב- x=-\frac{3}{2}y+\frac{13}{2}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{-15+13}{2}
הכפל את -\frac{3}{2} ב- 5.
x=-1
הוסף את \frac{13}{2} ל- -\frac{15}{2} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=-1,y=5
המערכת נפתרה כעת.
2x+3y=13,-6x+y=11
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}2&3\\-6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\11\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}2&3\\-6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}2&3\\-6&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\left(-6\right)}&-\frac{3}{2-3\left(-6\right)}\\-\frac{-6}{2-3\left(-6\right)}&\frac{2}{2-3\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}13\\11\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}&-\frac{3}{20}\\\frac{3}{10}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}13\\11\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\times 13-\frac{3}{20}\times 11\\\frac{3}{10}\times 13+\frac{1}{10}\times 11\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-1,y=5
חלץ את רכיבי המטריצה x ו- y.
2x+3y=13,-6x+y=11
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
-6\times 2x-6\times 3y=-6\times 13,2\left(-6\right)x+2y=2\times 11
כדי להפוך את 2x ו- -6x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- -6 ואת כל האיברים בכל אגף של המשוואה השניה ב- 2.
-12x-18y=-78,-12x+2y=22
פשט.
-12x+12x-18y-2y=-78-22
החסר את -12x+2y=22 מ- -12x-18y=-78 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-18y-2y=-78-22
הוסף את -12x ל- 12x. האיברים -12x ו- 12x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-20y=-78-22
הוסף את -18y ל- -2y.
-20y=-100
הוסף את -78 ל- -22.
y=5
חלק את שני האגפים ב- -20.
-6x+5=11
השתמש ב- 5 במקום y ב- -6x+y=11. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
-6x=6
החסר 5 משני אגפי המשוואה.
x=-1
חלק את שני האגפים ב- -6.
x=-1,y=5
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}