דילוג לתוכן העיקרי
הערך
Tick mark Image
גזור ביחס ל- ‎x
Tick mark Image

בעיות דומות מחיפוש באינטרנט

שתף

\int 2x\left(\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
השתמש בבינום של ניוטון \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} כדי להרחיב את ‎\left(x^{2}+1\right)^{3}.
\int 2x\left(x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
כדי להעלות חזקה בחזקה אחרת, הכפל את המעריכים. הכפל את ‎2 ו- 3‎ כדי לקבל ‎6.
\int 2x\left(x^{6}+3x^{4}+3x^{2}+1\right)\mathrm{d}x
כדי להעלות חזקה בחזקה אחרת, הכפל את המעריכים. הכפל את ‎2 ו- 2‎ כדי לקבל ‎4.
\int 2x^{7}+6x^{5}+6x^{3}+2x\mathrm{d}x
השתמש בחוק הפילוג כדי להכפיל את 2x ב- x^{6}+3x^{4}+3x^{2}+1.
\int 2x^{7}\mathrm{d}x+\int 6x^{5}\mathrm{d}x+\int 6x^{3}\mathrm{d}x+\int 2x\mathrm{d}x
אינטגרל את המונח סכום לפי מונח.
2\int x^{7}\mathrm{d}x+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
הוצא גורם משותף מהקבוע בכל אחד מהאיברים.
\frac{x^{8}}{4}+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
מאז \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} לk\neq -1, החלף \int x^{7}\mathrm{d}x ב\frac{x^{8}}{8}. הכפל את ‎2 ב- ‎\frac{x^{8}}{8}.
\frac{x^{8}}{4}+x^{6}+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
מאז \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} לk\neq -1, החלף \int x^{5}\mathrm{d}x ב\frac{x^{6}}{6}. הכפל את ‎6 ב- ‎\frac{x^{6}}{6}.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+2\int x\mathrm{d}x
מאז \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} לk\neq -1, החלף \int x^{3}\mathrm{d}x ב\frac{x^{4}}{4}. הכפל את ‎6 ב- ‎\frac{x^{4}}{4}.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+x^{2}
מאז \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} לk\neq -1, החלף \int x\mathrm{d}x ב\frac{x^{2}}{2}. הכפל את ‎2 ב- ‎\frac{x^{2}}{2}.
x^{2}+\frac{3x^{4}}{2}+x^{6}+\frac{x^{8}}{4}+С
אם F\left(x\right) הוא אנטי-נגזרת של f\left(x\right), ולאחר מכן הערכה של כל antiderivatives של f\left(x\right) ניתנת על-ידי F\left(x\right)+C. לכן, הוסף את הקבוע של שילוב C\in \mathrm{R} לתוצאה.