הערך
\frac{x^{6}}{6}+\frac{x^{4}}{4}-10x^{2}+С
גזור ביחס ל- x
x\left(x^{4}+x^{2}-20\right)
שתף
הועתק ללוח
\int x^{5}\mathrm{d}x+\int x^{3}\mathrm{d}x+\int -20x\mathrm{d}x
שלב את איבר הסיכום לפי איבר.
\int x^{5}\mathrm{d}x+\int x^{3}\mathrm{d}x-20\int x\mathrm{d}x
הוצא גורם משותף מהקבוע בכל אחד מהאיברים.
\frac{x^{6}}{6}+\int x^{3}\mathrm{d}x-20\int x\mathrm{d}x
מאחר ש\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} עבור k\neq -1, החלף את \int x^{5}\mathrm{d}x ב\frac{x^{6}}{6}.
\frac{x^{6}}{6}+\frac{x^{4}}{4}-20\int x\mathrm{d}x
מאחר ש\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} עבור k\neq -1, החלף את \int x^{3}\mathrm{d}x ב\frac{x^{4}}{4}.
\frac{x^{6}}{6}+\frac{x^{4}}{4}-10x^{2}
מאחר ש\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} עבור k\neq -1, החלף את \int x\mathrm{d}x ב\frac{x^{2}}{2}. הכפל את -20 ב- \frac{x^{2}}{2}.
\frac{x^{6}}{6}+\frac{x^{4}}{4}-10x^{2}+С
אם F\left(x\right) הוא נגזרת של f\left(x\right), אזי הערכה של כל antiderivatives הf\left(x\right) ניתנת על-ידי F\left(x\right)+C. לכן, הוסף את הקבוע של C\in \mathrm{R} שילוב לתוצאה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}