הערך
-\frac{27}{2}=-13.5
שתף
הועתק ללוח
\int _{0}^{1}6x^{2}-10x+9x-15\mathrm{d}x
החל את חוק הפילוג על-ידי הכפלת כל איבר של 2x+3 בכל איבר של 3x-5.
\int _{0}^{1}6x^{2}-x-15\mathrm{d}x
כנס את -10x ו- 9x כדי לקבל -x.
\int 6x^{2}-x-15\mathrm{d}x
הערך את האינטגרל הבלתי מוגדר תחילה.
\int 6x^{2}\mathrm{d}x+\int -x\mathrm{d}x+\int -15\mathrm{d}x
אינטגרל את המונח סכום לפי מונח.
6\int x^{2}\mathrm{d}x-\int x\mathrm{d}x+\int -15\mathrm{d}x
הוצא גורם משותף מהקבוע בכל אחד מהאיברים.
2x^{3}-\int x\mathrm{d}x+\int -15\mathrm{d}x
מאז \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} לk\neq -1, החלף \int x^{2}\mathrm{d}x ב\frac{x^{3}}{3}. הכפל את 6 ב- \frac{x^{3}}{3}.
2x^{3}-\frac{x^{2}}{2}+\int -15\mathrm{d}x
מאז \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} לk\neq -1, החלף \int x\mathrm{d}x ב\frac{x^{2}}{2}. הכפל את -1 ב- \frac{x^{2}}{2}.
2x^{3}-\frac{x^{2}}{2}-15x
מצא את אינטגרל ה-15 באמצעות רשימת הכללים האינטגרליםת של כלל \int a\mathrm{d}x=ax.
2\times 1^{3}-\frac{1^{2}}{2}-15-\left(2\times 0^{3}-\frac{0^{2}}{2}-15\times 0\right)
האינטגרל המסוים הוא האנטי-נגזרת של הביטוי המוערך בגבול העליון של האינטגרציה פחות האנטי-נגזרת המוערכת בגבול התחתון של האינטגרציה.
-\frac{27}{2}
פשט.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}