דילוג לתוכן העיקרי
הערך
Tick mark Image
גזור ביחס ל- ‎x
Tick mark Image

בעיות דומות מחיפוש באינטרנט

שתף

\int 8\left(x^{2}\right)^{3}+36\left(x^{2}\right)^{2}+54x^{2}+27\mathrm{d}x
השתמש בבינום של ניוטון \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} כדי להרחיב את ‎\left(2x^{2}+3\right)^{3}.
\int 8x^{6}+36\left(x^{2}\right)^{2}+54x^{2}+27\mathrm{d}x
כדי להעלות חזקה בחזקה אחרת, הכפל את המעריכים. הכפל את ‎2 ו- 3‎ כדי לקבל ‎6.
\int 8x^{6}+36x^{4}+54x^{2}+27\mathrm{d}x
כדי להעלות חזקה בחזקה אחרת, הכפל את המעריכים. הכפל את ‎2 ו- 2‎ כדי לקבל ‎4.
\int 8x^{6}\mathrm{d}x+\int 36x^{4}\mathrm{d}x+\int 54x^{2}\mathrm{d}x+\int 27\mathrm{d}x
אינטגרל את המונח סכום לפי מונח.
8\int x^{6}\mathrm{d}x+36\int x^{4}\mathrm{d}x+54\int x^{2}\mathrm{d}x+\int 27\mathrm{d}x
הוצא גורם משותף מהקבוע בכל אחד מהאיברים.
\frac{8x^{7}}{7}+36\int x^{4}\mathrm{d}x+54\int x^{2}\mathrm{d}x+\int 27\mathrm{d}x
מאז \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} לk\neq -1, החלף \int x^{6}\mathrm{d}x ב\frac{x^{7}}{7}. הכפל את ‎8 ב- ‎\frac{x^{7}}{7}.
\frac{8x^{7}}{7}+\frac{36x^{5}}{5}+54\int x^{2}\mathrm{d}x+\int 27\mathrm{d}x
מאז \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} לk\neq -1, החלף \int x^{4}\mathrm{d}x ב\frac{x^{5}}{5}. הכפל את ‎36 ב- ‎\frac{x^{5}}{5}.
\frac{8x^{7}}{7}+\frac{36x^{5}}{5}+18x^{3}+\int 27\mathrm{d}x
מאז \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} לk\neq -1, החלף \int x^{2}\mathrm{d}x ב\frac{x^{3}}{3}. הכפל את ‎54 ב- ‎\frac{x^{3}}{3}.
\frac{8x^{7}}{7}+\frac{36x^{5}}{5}+18x^{3}+27x
מצא את אינטגרל ה27 באמצעות רשימת הכללים האינטגרליםת של כלל \int a\mathrm{d}x=ax.
27x+18x^{3}+\frac{36x^{5}}{5}+\frac{8x^{7}}{7}
פשט.
27x+18x^{3}+\frac{36x^{5}}{5}+\frac{8x^{7}}{7}+С
אם F\left(x\right) הוא אנטי-נגזרת של f\left(x\right), ולאחר מכן הערכה של כל antiderivatives של f\left(x\right) ניתנת על-ידי F\left(x\right)+C. לכן, הוסף את הקבוע של שילוב C\in \mathrm{R} לתוצאה.