דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
המשתנה x אינו יכול להיות שווה לאף אחד מהערכים -2,2 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני הצדדים של המשוואה ב- \left(x-2\right)\left(x+2\right), הכפולה המשותפת הנמוכה ביותר של x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
השתמש בחוק הפילוג כדי להכפיל את x-2 ב- 2.
-1+2x=\left(x-2\right)\left(x+2\right)
החסר את 4 מ- 3 כדי לקבל -1.
-1+2x=x^{2}-4
שקול את \left(x-2\right)\left(x+2\right). ניתן להמיר כפל להפרשי הריבועים באמצעות הכלל: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ‎2 בריבוע.
-1+2x-x^{2}=-4
החסר ‎x^{2} משני האגפים.
-1+2x-x^{2}+4=0
הוסף ‎4 משני הצדדים.
3+2x-x^{2}=0
חבר את ‎-1 ו- ‎4 כדי לקבל ‎3.
-x^{2}+2x+3=0
סדר מחדש את הפולינום כדי להעביר אותה לצורה סטנדרטית. מקם את האיברים לפי הסדר מהחזקה הגבוהה ביותר לנמוכה ביותר.
a+b=2 ab=-3=-3
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- -x^{2}+ax+bx+3. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
a=3 b=-1
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. הצמד היחיד מסוג זה הוא פתרון המערכת.
\left(-x^{2}+3x\right)+\left(-x+3\right)
שכתב את ‎-x^{2}+2x+3 כ- ‎\left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
הוצא את הגורם המשותף -x בקבוצה הראשונה ואת -1 בקבוצה השניה.
\left(x-3\right)\left(-x-1\right)
הוצא את האיבר המשותף x-3 באמצעות חוק הפילוג.
x=3 x=-1
כדי למצוא פתרונות משוואה, פתור את x-3=0 ו- -x-1=0.
3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
המשתנה x אינו יכול להיות שווה לאף אחד מהערכים -2,2 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני הצדדים של המשוואה ב- \left(x-2\right)\left(x+2\right), הכפולה המשותפת הנמוכה ביותר של x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
השתמש בחוק הפילוג כדי להכפיל את x-2 ב- 2.
-1+2x=\left(x-2\right)\left(x+2\right)
החסר את 4 מ- 3 כדי לקבל -1.
-1+2x=x^{2}-4
שקול את \left(x-2\right)\left(x+2\right). ניתן להמיר כפל להפרשי הריבועים באמצעות הכלל: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ‎2 בריבוע.
-1+2x-x^{2}=-4
החסר ‎x^{2} משני האגפים.
-1+2x-x^{2}+4=0
הוסף ‎4 משני הצדדים.
3+2x-x^{2}=0
חבר את ‎-1 ו- ‎4 כדי לקבל ‎3.
-x^{2}+2x+3=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- -1 במקום a, ב- 2 במקום b, וב- 3 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
‎2 בריבוע.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
הכפל את ‎-4 ב- ‎-1.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
הכפל את ‎4 ב- ‎3.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
הוסף את ‎4 ל- ‎12.
x=\frac{-2±4}{2\left(-1\right)}
הוצא את השורש הריבועי של 16.
x=\frac{-2±4}{-2}
הכפל את ‎2 ב- ‎-1.
x=\frac{2}{-2}
כעת פתור את המשוואה x=\frac{-2±4}{-2} כאשר ± כולל סימן חיבור. הוסף את ‎-2 ל- ‎4.
x=-1
חלק את ‎2 ב- ‎-2.
x=-\frac{6}{-2}
כעת פתור את המשוואה x=\frac{-2±4}{-2} כאשר ± כולל סימן חיסור. החסר ‎4 מ- ‎-2.
x=3
חלק את ‎-6 ב- ‎-2.
x=-1 x=3
המשוואה נפתרה כעת.
3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
המשתנה x אינו יכול להיות שווה לאף אחד מהערכים -2,2 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני הצדדים של המשוואה ב- \left(x-2\right)\left(x+2\right), הכפולה המשותפת הנמוכה ביותר של x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
השתמש בחוק הפילוג כדי להכפיל את x-2 ב- 2.
-1+2x=\left(x-2\right)\left(x+2\right)
החסר את 4 מ- 3 כדי לקבל -1.
-1+2x=x^{2}-4
שקול את \left(x-2\right)\left(x+2\right). ניתן להמיר כפל להפרשי הריבועים באמצעות הכלל: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ‎2 בריבוע.
-1+2x-x^{2}=-4
החסר ‎x^{2} משני האגפים.
2x-x^{2}=-4+1
הוסף ‎1 משני הצדדים.
2x-x^{2}=-3
חבר את ‎-4 ו- ‎1 כדי לקבל ‎-3.
-x^{2}+2x=-3
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=-\frac{3}{-1}
חלק את שני האגפים ב- ‎-1.
x^{2}+\frac{2}{-1}x=-\frac{3}{-1}
חילוק ב- ‎-1 מבטל את ההכפלה ב- ‎-1.
x^{2}-2x=-\frac{3}{-1}
חלק את ‎2 ב- ‎-1.
x^{2}-2x=3
חלק את ‎-3 ב- ‎-1.
x^{2}-2x+1=3+1
חלק את ‎-2, המקדם של האיבר x, ב- 2 כדי לקבל ‎-1. לאחר מכן הוסף את הריבוע של -1 לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-2x+1=4
הוסף את ‎3 ל- ‎1.
\left(x-1\right)^{2}=4
פרק x^{2}-2x+1 לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-1=2 x-1=-2
פשט.
x=3 x=-1
הוסף ‎1 לשני אגפי המשוואה.