דילוג לתוכן העיקרי
הערך
Tick mark Image
הרחב
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

\frac{x}{x+3}+\frac{7x+6}{\left(x-2\right)\left(x+3\right)}
פרק את x^{2}+x-6 לגורמים.
\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}+\frac{7x+6}{\left(x-2\right)\left(x+3\right)}
כדי לחבר או להחסיר ביטויים, הרחב אותם כדי ליצור עבורם מכנה זהה. המכפלה המשותפת הקטנה ביותר של ‎x+3 ו- ‎\left(x-2\right)\left(x+3\right) היא \left(x-2\right)\left(x+3\right). הכפל את ‎\frac{x}{x+3} ב- ‎\frac{x-2}{x-2}.
\frac{x\left(x-2\right)+7x+6}{\left(x-2\right)\left(x+3\right)}
מכיוון ש- \frac{x\left(x-2\right)}{\left(x-2\right)\left(x+3\right)} ו- \frac{7x+6}{\left(x-2\right)\left(x+3\right)} כוללים מכנה זהה, חבר אותם על-ידי חיבור המונים שלהם.
\frac{x^{2}-2x+7x+6}{\left(x-2\right)\left(x+3\right)}
בצע את פעולות הכפל ב- ‎x\left(x-2\right)+7x+6.
\frac{x^{2}+5x+6}{\left(x-2\right)\left(x+3\right)}
כינוס איברים דומים ב- x^{2}-2x+7x+6.
\frac{\left(x+2\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}
פרק לגורמים את הביטויים שלא פורקו כבר לגורמים ב- \frac{x^{2}+5x+6}{\left(x-2\right)\left(x+3\right)}.
\frac{x+2}{x-2}
ביטול ‎x+3 גם במונה וגם במכנה.
\frac{x}{x+3}+\frac{7x+6}{\left(x-2\right)\left(x+3\right)}
פרק את x^{2}+x-6 לגורמים.
\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}+\frac{7x+6}{\left(x-2\right)\left(x+3\right)}
כדי לחבר או להחסיר ביטויים, הרחב אותם כדי ליצור עבורם מכנה זהה. המכפלה המשותפת הקטנה ביותר של ‎x+3 ו- ‎\left(x-2\right)\left(x+3\right) היא \left(x-2\right)\left(x+3\right). הכפל את ‎\frac{x}{x+3} ב- ‎\frac{x-2}{x-2}.
\frac{x\left(x-2\right)+7x+6}{\left(x-2\right)\left(x+3\right)}
מכיוון ש- \frac{x\left(x-2\right)}{\left(x-2\right)\left(x+3\right)} ו- \frac{7x+6}{\left(x-2\right)\left(x+3\right)} כוללים מכנה זהה, חבר אותם על-ידי חיבור המונים שלהם.
\frac{x^{2}-2x+7x+6}{\left(x-2\right)\left(x+3\right)}
בצע את פעולות הכפל ב- ‎x\left(x-2\right)+7x+6.
\frac{x^{2}+5x+6}{\left(x-2\right)\left(x+3\right)}
כינוס איברים דומים ב- x^{2}-2x+7x+6.
\frac{\left(x+2\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}
פרק לגורמים את הביטויים שלא פורקו כבר לגורמים ב- \frac{x^{2}+5x+6}{\left(x-2\right)\left(x+3\right)}.
\frac{x+2}{x-2}
ביטול ‎x+3 גם במונה וגם במכנה.