פתור עבור x
x=-4
x=3
גרף
שתף
הועתק ללוח
x^{2}-3x+4=-4\left(x-4\right)
המשתנה x אינו יכול להיות שווה ל- 4 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני אגפי המשוואה ב- x-4.
x^{2}-3x+4=-4x+16
השתמש בחוק הפילוג כדי להכפיל את -4 ב- x-4.
x^{2}-3x+4+4x=16
הוסף 4x משני הצדדים.
x^{2}+x+4=16
כנס את -3x ו- 4x כדי לקבל x.
x^{2}+x+4-16=0
החסר 16 משני האגפים.
x^{2}+x-12=0
החסר את 16 מ- 4 כדי לקבל -12.
a+b=1 ab=-12
כדי לפתור את המשוואה, פרק את x^{2}+x-12 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,12 -2,6 -3,4
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -12.
-1+12=11 -2+6=4 -3+4=1
חשב את הסכום של כל צמד.
a=-3 b=4
הפתרון הוא הצמד שנותן את הסכום 1.
\left(x-3\right)\left(x+4\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=3 x=-4
כדי למצוא פתרונות משוואה, פתור את x-3=0 ו- x+4=0.
x^{2}-3x+4=-4\left(x-4\right)
המשתנה x אינו יכול להיות שווה ל- 4 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני אגפי המשוואה ב- x-4.
x^{2}-3x+4=-4x+16
השתמש בחוק הפילוג כדי להכפיל את -4 ב- x-4.
x^{2}-3x+4+4x=16
הוסף 4x משני הצדדים.
x^{2}+x+4=16
כנס את -3x ו- 4x כדי לקבל x.
x^{2}+x+4-16=0
החסר 16 משני האגפים.
x^{2}+x-12=0
החסר את 16 מ- 4 כדי לקבל -12.
a+b=1 ab=1\left(-12\right)=-12
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx-12. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,12 -2,6 -3,4
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -12.
-1+12=11 -2+6=4 -3+4=1
חשב את הסכום של כל צמד.
a=-3 b=4
הפתרון הוא הצמד שנותן את הסכום 1.
\left(x^{2}-3x\right)+\left(4x-12\right)
שכתב את x^{2}+x-12 כ- \left(x^{2}-3x\right)+\left(4x-12\right).
x\left(x-3\right)+4\left(x-3\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 4 בקבוצה השניה.
\left(x-3\right)\left(x+4\right)
הוצא את האיבר המשותף x-3 באמצעות חוק הפילוג.
x=3 x=-4
כדי למצוא פתרונות משוואה, פתור את x-3=0 ו- x+4=0.
x^{2}-3x+4=-4\left(x-4\right)
המשתנה x אינו יכול להיות שווה ל- 4 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני אגפי המשוואה ב- x-4.
x^{2}-3x+4=-4x+16
השתמש בחוק הפילוג כדי להכפיל את -4 ב- x-4.
x^{2}-3x+4+4x=16
הוסף 4x משני הצדדים.
x^{2}+x+4=16
כנס את -3x ו- 4x כדי לקבל x.
x^{2}+x+4-16=0
החסר 16 משני האגפים.
x^{2}+x-12=0
החסר את 16 מ- 4 כדי לקבל -12.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 1 במקום b, וב- -12 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
1 בריבוע.
x=\frac{-1±\sqrt{1+48}}{2}
הכפל את -4 ב- -12.
x=\frac{-1±\sqrt{49}}{2}
הוסף את 1 ל- 48.
x=\frac{-1±7}{2}
הוצא את השורש הריבועי של 49.
x=\frac{6}{2}
כעת פתור את המשוואה x=\frac{-1±7}{2} כאשר ± כולל סימן חיבור. הוסף את -1 ל- 7.
x=3
חלק את 6 ב- 2.
x=-\frac{8}{2}
כעת פתור את המשוואה x=\frac{-1±7}{2} כאשר ± כולל סימן חיסור. החסר 7 מ- -1.
x=-4
חלק את -8 ב- 2.
x=3 x=-4
המשוואה נפתרה כעת.
x^{2}-3x+4=-4\left(x-4\right)
המשתנה x אינו יכול להיות שווה ל- 4 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני אגפי המשוואה ב- x-4.
x^{2}-3x+4=-4x+16
השתמש בחוק הפילוג כדי להכפיל את -4 ב- x-4.
x^{2}-3x+4+4x=16
הוסף 4x משני הצדדים.
x^{2}+x+4=16
כנס את -3x ו- 4x כדי לקבל x.
x^{2}+x=16-4
החסר 4 משני האגפים.
x^{2}+x=12
החסר את 4 מ- 16 כדי לקבל 12.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
חלק את 1, המקדם של האיבר x, ב- 2 כדי לקבל \frac{1}{2}. לאחר מכן הוסף את הריבוע של \frac{1}{2} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
העלה את \frac{1}{2} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}+x+\frac{1}{4}=\frac{49}{4}
הוסף את 12 ל- \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
פרק x^{2}+x+\frac{1}{4} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
פשט.
x=3 x=-4
החסר \frac{1}{2} משני אגפי המשוואה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}